
التقييم المقارن لأدوات تحليل تكوين البرمجيات 
في سياق تخفيض الديون الفنية

Comparative Evaluation of Software Composition Analysis 
Tools in Context of Technical Debt Reduction

The International Journal of Public Policies In Egypt- Volume 3, Issue 4 (October 2024)
ISSN: Print: 2812-4758, Online: 2812- 4766
Published by IDSC

Received: 13/6/2024,  Accepted: 25/9/2024

Citation: Ali, N., Mohamed, S., & Magdi, D. (2024). Comparative Evaluation of Software 
Composition Analysis Tools in Context of Technical Debt Reduction. The International 
Journal of Public Policies in Egypt, 3(4), 206 - 228.

DOI: 10.21608/ijppe.2024.389252              URL: http://doi.org/ 10.21608/ijppe.2024.389252

ندا مصطفى علي 1، سمر خالد محمد 2، داليا أحمد مجدي 3
1 كلية علوم الحاسب، المعهد الكندي العالي للحاسب الألى، القاهرة، مصر

2 كلية علوم الحاسب، المعهد الكندي العالي للحاسب الألى، القاهرة، مصر

3  قسم نظم المعلومات والحاسب الآلي، كلية علوم الحاسب الآلي، أكاديمية السادات للعلوم الإدارية، القاهرة، مصر

Daliamagdi@gmail.com :المراسلة

Nada M. Ali1, Samar K. Mohamed2, Dalia A. Magdi3

1 School of Computer Science, Canadian International College, Cairo, Egypt 
2 School of Computer Science, Canadian International College, Cairo, Egypt
3  Computer and Information System Department, School of Computer Sciences, Sadat Academy for 

Management Sciences, Cairo, Egypt
Correspondence: Daliamagdi@gmail.com 



 
 
 
 
 
 

Comparative Evaluation of Software Composition Analysis 
Tools in Context of Technical Debt Reduction 

 
 

Abstract 

The metaphor of "technical debt" is used in software engineering to describe technical solutions that 
may be practical in the short term but have a detrimental long-term consequence. Tools for software 
composition analysis (SCA) are proposed to detect potential vulnerabilities presented by open-source 
software (OSS) imported as third-party libraries. As software functionality becomes more 
complicated, SCA tools may confront various scenarios throughout the dependency resolution 
process, including diverse artifact formats, dependency imports, and dependence requirements. This 
study provides a comparative review of SCA techniques in the context of technical debt reduction, 
focusing on the analogous decisions and dynamics seen in systems engineering. 
 
Keywords: Technical Debt, Software Composition Analysis (SCA), Open-Source Software (OSS), 
dependency resolution, systems engineering 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

207207The International Journal of Public Policies In Egypt, Volume 3, Issue 3 (July 2024)
ISSN: Print: 2812-4758, Online: 2812- 4766
Published by IDSC

Nada M. Ali
Samar K. Mohamed
Dalia A. Magdi



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

208
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

 
 

Introduction 

In software engineering, "technical debt" is commonly used to describe the trade-off between rapid 
development and the long-term maintainability of a software system (Dudee, 2021). This metaphor, 
popularized by Ward Cunningham (Melo et al., 2022), represents the potential consequences of 
prioritizing rapid development over strong codebases. A very dangerous type of technical debt is 
"security debt," which results from vulnerabilities introduced during the software development 
lifecycle. If not fixed, these security flaws might expose systems to attack, potentially resulting in 
serious consequences. 

The widespread use of open-source software (OSS) has had a considerable impact on development 
processes, with developers increasingly turning to third-party libraries (TPLs) to speed up 
development and improve application functionality (Zaimi et al., 2015). While this technique reduces 
time-to-market, it also raises possible security issues, contributing to building security debt. 

Software Composition Analysis (SCA) tools have evolved as critical components of current 
software development processes to address these concerns. These tools check software projects for 
vulnerabilities, license violations, and other security threats (Ombredanne, 202 (0 . By recognizing 
these concerns early in the development process, SCA tools can assist organizations in reducing 
technical debt, particularly security debt, and improving software quality. 

However, the value of SCA tools varies greatly, depending on aspects like the tool's accuracy, 
performance, and the complexity of the software under analysis. The purpose of this study is to 
evaluate SCA tools comprehensively to determine their usefulness in reducing security debt and to 
give actionable information to organizations looking for ways to improve their software development 
processes. 

Security Debt 
It is one of the technical debt types that refers to the vulnerabilities and bugs in a software system 
during its entire life cycle. It is the common result of decisions taken during the development process 
that value speed of delivery over effective controls (Siavvas et al., 2019). The following figure 
illustrates the various sources that contribute to security debt within a software system. 
 
Figure 1 
Common Sources of Security Debt 

Source: (McClintock, 2021). 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

209
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

As shown in Figure 1, the sources of accruing security debt can be severe. Unlike other types of 
technical debt, which primarily influence maintainability and performance, security debt poses a 
significant threat to a software system's integrity and safety. 

Managing security debt requires a proactive strategy for addressing vulnerabilities. Software 
Composition Analysis (SCA) tools are widely used for this purpose. By continuously monitoring and 
analyzing the open-source components of a software project, SCA tools can find vulnerabilities early 
and provide actionable insights to mitigate them. The proper use of SCA tools can dramatically 
decrease security debt, ensuring that software is secure and resilient to possible threats. 

The major objective of this research is to compare software composition analysis tools in the 
context of technical debt reduction. The first step toward addressing this objective is to evaluate 
various software composition analysis tools and analyze the results and findings. These tools are then 
compared and evaluated based on seven different criteria.  

After the introduction, this study is divided into sections: section 1 discusses the literature review, 
section 2 tackles the importance of technical debt reductions, section 3 discusses the selection of the 
most appropriate SCA tools, and the last section is the conclusion and future directions. 

Literature Review 

This section critically examines existing research on technical debt, aiming at identifying key 
findings, theories, and methodologies that can guide future studies. By analyzing current work, this 
evaluation will also pinpoint gaps in our understanding of technical debt and explain how the current 
study uniquely contributes to this field. 

Definition and Concept of Technical Debt 

Cunningham first introduced the technical debt metaphor to explain the importance of refactoring 
software to his management system (Melo et al., 2022). Technical debt describes the long-term 
consequences of implementation decisions made during the software development process. These 
implementation decisions concentrate on immediate benefits, such as shorter development time or 
feature delivery, over long-term considerations, resulting in lower code quality, higher complexity, 
and decreased maintainability. The technical debt life cycle describes how it may be introduced, 
managed, and ultimately resolved within a software development project. Figure 2 illustrates the life 
cycle of technical debt from its inception to its resolution, highlighting key stages and potential 
consequences. 

Figure 2 
Technical debt life cycle 

 
Source: (Itech India, 2021, June 29). 

Understanding the life cycle of technical debt, as shown in Figure 2, is essential for effectively 
controlling and minimizing its negative effects on software quality and sustainability. Different types 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

210
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

of technical debt were introduced, including design, code, test, documentation, and security debt. 
Each one influences a different aspect of software development (Li et al., 2023), as: 
●  Design debt refers to architectural or design decisions that consider short-term gains but may 

hinder future scalability or extensibility. 
● Code debt occurs when developers choose an easy way to finish a feature instead of the best 

practice, which could take more time. 
● Test debt happens when testing tasks are postponed or compromised during software 

development.  
● Documentation debt is a lack of or outdated documentation that prevents the understanding and 

maintenance of a software system. 
● Security debt focuses on vulnerabilities and weaknesses developed during the software 

development process, which provide security risks that attackers can exploit. 
 

Importance of Composition Analysis Tools 
Software composition analysis (SCA) is a technique used to discover and manage open-source 

components and licensing ) Ombredanne, 2020(. As shown in Figure 3, this technique uses a 
thorough analytic process to discover vulnerabilities. It ensures that all components, including 
open-source dependencies, meet demanding quality and security criteria before being integrated. 
This comprehensive strategy helps prevent threats while improving the software's overall security 
and dependability. 

For any modern-day software product, the equivalent, or more, number of lines of code of open-
source software is utilized. From Stack Overflow, GitHub, PyPi, or any code-related query online, 
you will find results and offer more reusable code that can be directly plugged into any product. 
SCA provides higher speed, convenience, better solutions, debugged versions, and smaller 
investments, which are helpful for start-ups or larger organizations (Imtiaz et al., 2021). Figure 3 
illustrates the sequential steps involved in the software composition analysis process. 
 
Figure 3 
Software Composition Analysis Workflow 

 
Source: (TatvaSoft Blog, 2023, December 12) 

  
These tools play an important role in modern software development environments for several 
compelling reasons: 
● Tracking open-source components, SCA tools help automatically detect the open-source libraries 

used and generate a report, ensuring developers know what they are using and can quickly address 
potential issues. 

● Eliminating Business Risks, while open-source components might be advantageous, they can also 
pose unexpected threats to a firm. Using old or vulnerable components exposes software to attack. 
SCA assists in recognizing these risks early, allowing firms to take proactive measures to ensure 
software stability. 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

211
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

● Continuous vulnerability detection and monitoring, it is important to have a continuous 
monitoring technique because new vulnerabilities are identified daily. SCA composition analysis 
offers continuous vulnerability detection and monitoring, highlighting vulnerabilities in real-time 
and enabling quick action. 

● Automated and Prioritized Vulnerability Remediation, one of the most notable aspects of SCA is 
its ability to not only discover vulnerabilities but also prioritize them depending on severity. This 
ensures that the most serious vulnerabilities are addressed first, automating most of the 
remediation process and making better use of resources. 

● Reducing security costs, investing in (SCA) Software Composition Analysis may appear to be an 
additional expenditure, but in the long term, it considerably saves security costs. You can avoid 
costly patches and potential breaches by identifying vulnerabilities early on. 

This research aims to fill the gaps by doing a comparative analysis of SCA tools, focusing on their 
ability to decrease security debt. It provides a complete review to help organizations choose the best 
SCA tool for their needs by assessing essential features, performance, and integration possibilities. 
 
Related Works  

To speed up development, software engineers usually create security debt, a backlog of security 
vulnerabilities that must be fixed later. This section examines existing research on recognizing, 
quantifying, and managing security debt to improve software system security. While previous 
research has improved our knowledge of security debt, important research gaps remain, as there are 
no clear criteria for evaluating security debt. 

Understanding the consequences of ignoring security debt is critical since it can result in serious 
system vulnerabilities, financial losses, and reputational harm. This research will develop a uniform 
methodology for quantifying security debt and analyze the link between security debt and software 
quality attributes. By filling these research gaps, this study contributes to a better understanding of 
security debt and its effects on software systems. 

Coetzer and Leenen (2024) delved into cybersecurity debt, mentioning that cybersecurity debt is 
a form of technical debt that focuses on finding security vulnerabilities in IT systems, which increases 
due to resource limitations, time constraints, and a lack of expertise, potentially leading to serious 
security breaches. The study highlighted the importance of identifying, prioritizing, and mitigating 
cyber security debt and the escalating risks of delaying its repayment. Using a detailed analysis and 
a case study of the Equifax breach, the study defined the real-world consequences of skipping security 
debt management. 

Cifuentes et al. (2023) researched developing program analysis tools for finding security 
vulnerabilities in industrial environments. The study underlined that the successful utilization of these 
tools by development companies depends on low false-positive rates, ease of integration, scalability, 
and straightforward results. Analysis techniques have evolved to address a variety of programming 
languages and security concerns, including memory-related vulnerabilities in C and injection 
vulnerabilities in Javascript and Python. The study proposed an intelligent application security vision 
in which integrated technologies share information and address new concerns, such as supply chain 
security. 

Kruke (2022) investigated the concept of security debt within software systems, defining it as 
choices that could be design choices or implementation choices. These choices could slow down 
achieving the optimal security goal. By doing an exploratory case study on 26 different software, the 
study dived into how security debt is managed and how it can be a part of technical debt. The study 
defined three main methods for managing security debt. The result indicated the necessity of security-



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

212
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

oriented management approaches and revealed that inadequate security knowledge can lead to 
increased security debt. The paper also settled a connection between security debt and technical debt. 

Imtiaz et al. (2021) investigated the differences in vulnerability reporting using different software 
composition analysis tools, which are used to follow vulnerabilities in third-party libraries and 
frameworks. By analyzing nine industry-leading SCA tools on a large web application, OpenMRS, 
which includes Maven (Java) and npm (JavaScript) projects, this research demonstrated the 
differences in the number of vulnerabilities that have been reported using different tools, ranging 
from 17 to 332 for Maven and 32 to 239 for npm projects. 

Martinez et al. (2021) demonstrated proactive security management in diverse industries. The 
paper focused on applying inadequate solutions to achieve desired security levels, highlighting the 
challenges companies face in addressing and explicitly stating security debt items and defining 
security debt as a result.  

Rindell et al. (2019) focused on discussing the under-prioritization of security in software 
development, in which developers sometimes lack awareness of security practices. The study 
proposed identifying security risk as a type of technical debt. Based on this proposal, it identified the 
concept of security debt, which encompassed security risks within TD categories such as 
requirements, architecture, code, and testing.  

Izurieta et al. (2018) addressed the management of technical debt in the context of security breaches 
identified through the design phase of software development. The study goal was to establish a 
method for finding TD linked to security weaknesses. This study also defined security debt as a 
special case within the technical debt management system that should be considered due to the 
potential different business impacts of unfounded security weaknesses. 

Technical debt is a metaphor for the consequences of poor technical decisions, and it includes 
security debt, which is produced by ignoring security during software development. Viewing security 
debt through the perspective of technical debt theory allows us to identify underlying causes, 
prioritize essential efforts, and design effective management solutions. Existing review papers 
generally address the nature, effects, and management of security debt. Table 1 compares the current 
study with other review studies, highlighting definitions, quantification, and management strategies. 

 
Table 1 
Comparison Between Other Review Papers 

Study Definition of Security Debt Quantification Method Management Strategies 

Coetzer& 
Leenen 
(2024) 

Form of technical debt related to 
security vulnerabilities Risk assessment 

Prioritization and mitigation of 
cyber security debt 

Kruke 
(2022) 

Choices that limit achieving optimal 
security goals 

Qualitative analysis Security-oriented management 
approaches 

Martinez et 
al. (2021) 

Inadequate solutions to achieve 
desired security levels 

Case studies Proactive security 
management 

Current 
Study 

vulnerabilities and bugs that have 
happened in a software system 

during its entire life cycle 

Key features and 
capabilities of each SCA 

tool 
Vulnerability Management 

Source: Prepared by the authors. 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

213
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

SCA tools, which look for vulnerabilities in software components, appear to be a good solution to 
manage security debt. While few studies have mentioned SCA, a lack of attention is paid to its 
significance in decreasing security debt. This study seeks to close this gap by thoroughly evaluating 
SCA tools and their usefulness in finding, prioritizing, and fixing vulnerabilities. By overcoming past 
research constraints and conducting a targeted investigation of SCA tools, it contributes to a better 
understanding of security debt. It provides practical insights for organizations looking to enhance 
their software security posture. 

 
Importance of Technical Debt Reduction 

According to Stepsize’s survey (Stepsize, 2021), 58% of businesses lack a mechanism for reducing 
technical debt, despite 60% of engineers warning about the negative impact on the company. Figure 
4 shows the negative consequences of increasing technical debt in software development. It highlights 
the possible consequences on project schedules, development costs, code quality, and overall system 
performance. Figure 4 illustrates the consequences of accumulated technical debt on software 
development projects. 

 
Figure 4 
Consequences of Technical Debt 

 
Source: (Olsson et al., 2021). 
 

Working with outdated systems becomes more difficult than it should be due to technical debt. It's 
an uncomfortable reality for developers and entrepreneurs. Moreover, the cost of technical debt rises 
considerably with time. Thus, the sooner your business addresses these loans in your codebases, the 
better. 

Figure 5 shows the significant advantages that can be achieved by effectively reducing technical 
debt. The figure outlines three primary categories of benefits, each with its own set of positive 
outcomes: 

1. Productivity, reducing technical debt makes it easier for the development team to provide new 
features, resolve defects, and deliver high-quality software. It also improves their morale because 
they can provide more value faster. 

2. Product quality, a well-planned system can support a wider feature set than a badly developed 
one. As a result, reducing technical debt can help create better products with fewer bugs and 
vulnerabilities. 

3. Maintainability and scalability, a good codebase is much easier to maintain than an ill-conceived 
one. Reducing technical debt will reduce the cost of overall future maintenance because it will be 
much easier for the developers to understand the codebase and immediately start working on it. 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

214
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

Figure 5 
Core Features of SCA Tools 

 
Source: (Debricked, 2021- October 11). 
 
Reducing technical debt is an important factor for success and efficiency in modern software 

development, as unfixed technical debt leads to software errors. By managing and reducing technical 
debt wisely, businesses can enhance development processes and product reliability and make sure 
that their systems remain adaptable and robust in the face of future challenges (Rios et al., 2018). 
 

Methodology 

A combination of tools, including static code analysis, vulnerability scanners, and risk assessment 
frameworks, are essential for calculating security debt and setting priorities in software development 
projects. 

Accurately measuring security debt and successfully prioritizing vulnerabilities are still important 
issues in software development. While several tools and methodologies have been developed, a 
standardized approach to these tasks remains absent. This study intends to address these problems by 
performing a comparative review of existing methods for assessing and analyzing security debt 
reduction measures. By studying these tools, we want to determine their strengths, shortcomings, and 
prospects for solving the challenges of security debt management. 

This section thoroughly explains the methodologies used to assess and analyze various options for 
lowering security debt (Rindell et al., 2019). This serves as the basis for this comparative study. 

A variety of technologies may be employed to calculate security debt and prioritize vulnerabilities, 
each with its own set of features and capabilities. 
 
Tool Categories 

This section helps you categorize tools based on their functions, making it easier to understand the 
wide range of tools available and choose the most appropriate one for your specific needs. 

Static Analysis Tools 
Static analysis tools are software development tools that analyze source code without running it. 

They examine the code for errors, security vulnerabilities, and coding standards breaches. Static 
analysis contributes to better software quality and security by discovering these issues early in the 
development cycle. These technologies are critical for maintaining high software development 
standards and can assist in avoiding costly mistakes and vulnerabilities from entering production.  

● SonarQube, it is an open-source platform for continuous inspection of code quality and 
security, including vulnerability detection (Marcilio et al., 2019). 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

215
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

● Checkmarx, it is a commercial static application security testing (SAST) tool for identifying 
vulnerabilities in code (Singh, 2024). 

● Fortify on Demand (Micro Focus), it is a commercial SAST tool for finding security 
vulnerabilities, coding errors, and compliance issues (Hellström, 2009). 

Dynamic Analysis Tools 
Dynamic analysis tools analyze software's behaviour during runtime. They run the code in 

controlled conditions and watch how it interacts with the environment. This enables them to detect 
issues like memory leaks, performance, and security flaws that might not be seen during static 
analysis. Dynamic analysis effectively evaluates real-world scenarios and ensures software works as 
intended under varying settings. 

● Burp Suite, it is a commercial web application security testing (WAST) platform for 
intercepting, inspecting, and modifying web traffic (Kim, 2020). 

● OWASP ZAP, it is an open-source WAST tool for finding vulnerabilities in web applications 
(Jakobsson& Häggström, 2022). 

● Nessus (Tenable), it is a commercial vulnerability scanner for identifying vulnerabilities in 
systems and networks (Holcomb, 2009). 

● OpenVAS, it is an open-source vulnerability scanner for detecting vulnerabilities in systems 
and applications (Rahalkar, 2019). 

● Qualys, it is a commercial vulnerability management and compliance solution (Sharma et al., 
2024). 

Risk Assessment Tools 
Risk assessment tools are software applications that assist organizations in identifying, analyzing, 

and evaluating risks. These tools frequently use a variety of approaches, like threat modelling, 
vulnerability scanning, and impact analysis, to determine the probability and impact of certain risks. 
These tools assist organizations in making decisions regarding security measures and emergency 
plans. Risk assessment techniques are essential for protecting valuable assets and managing potential 
risks. 

● RiskLens, it is a commercial platform for quantitative risk assessment and management 
(Barlow et al., 2021). 

● Security Scorecard, it is an open-source tool for assessing and improving security (Arntzen 
Toftegaard, 2022). 

● ThreatModeler (Microsoft), it is a commercial software that detects and mitigates security 
vulnerabilities (Pai & Kunte, 2022). 

Security Debt Management Platforms 
Security debt management systems are software tools that assist organizations in tracking security 

vulnerabilities. These platforms frequently interface with various security tools, including 
vulnerability scanners and static analysis tools, to offer a complete picture of an organization's 
security posture. By providing a disciplined approach to addressing security vulnerabilities, these 
systems help organizations reduce risk exposure and improve overall security posture.  



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

216
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

● DefectDojo, it is an open-source vulnerability management application for tracking, 
managing, and prioritizing vulnerabilities (Bernardo, 2022). 

● Snyk, it is a security tool that finds and resolves vulnerabilities in code, containers, and open 
source dependencies (D et al, 2023). 

● GitLab, the GitLab DevOps platform has built-in security measures like vulnerability 
detection and licensing compliance (Rahman,2024). 

Specialized Tools 
Specialized tools are created for specialized jobs or industries and have more advanced features 

and capabilities than general-purpose tools. To utilize these technologies properly, you will likely 
need specialized expertise or training. Examples of specialized tools are: 

● Veracode Software Composition Analysis (SCA), it is a commercial tool that identifies 
open-source vulnerabilities and license compliance concerns (Singh, 2024). 

● Black Duck (Synopsys), it is a commercial SCA tool for managing open-source risk (Lallet 
et al., 2008). 

● OWASP Dependency-Check, it is an open-source tool for identifying and assessing 
vulnerabilities in open-source components (Cadariu et al., 2015). 

● FOSSA, it is a commercial open-source software management platform with vulnerability 
scanning capabilities (Zhang, 2020) 

● Aqua Security, it is a commercial platform for securing containerized applications, including 
vulnerability scanning and compliance (Makani& Jangampeta, 2024). 

● Trivy, it is an open-source vulnerability scanner for container images (Zarei, 2022). 
● SQLError, it is an open-source tool for detecting SQL vulnerabilities in applications 

(Cebollero et al., 2015). 

This study will evaluate these tools to discover the best solutions for diverse project contexts and 
organizational demands. 

Selection Criteria: For Security debt management 

This research focuses on reducing security debt. To achieve this goal, the selection of tools was 
prioritized based on their relevance to effective security management, as outlined below: 

● Security Debt Metrics Analysis, they are tools were evaluated based on their capability to 
analyze critical security debt metrics. This contains functionality for evaluating vulnerability 
fix time, cost, and risk reduction. These measurements are critical in determining the exact 
impact of security debt and the impact of reduction. These metrics included: 
➢ Vulnerability Fix Time, it is the average time required to repair a vulnerability, from 

discovery to resolution. 
➢ Cost is the financial resources needed to repair a vulnerability, including labour, 

equipment, and potential business effects. 
➢ Risk reduction, it is the decrease in the occurrence and impact of a security event 

once a vulnerability has been fixed. 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

217
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

These criteria were chosen as they give a complete picture of the impact of security debt 
and the effect of repairing activities. The vulnerability fix time aids in the identification 
of slow-moving vulnerabilities, but the cost of repair influences resource allocation 
decisions. Risk reduction assesses the total effectiveness of security debt mitigation. 

● Usability for Security Debt Management, while usability is essential, the selection process 
takes into consideration the special requirements of security debt management. Priority is 
given to tools that are easy to use and understand, especially for stakeholders with less 
technical expertise. Throughout the study process, this ensures informed decision-making and 
active participation. 

By keeping these standards in mind, the tools chosen will be ideal for evaluating and contrasting 
different security debt reduction approaches, eventually yielding insightful findings for this study.  

Selected SCA Tools Based on Selection Criteria 

After defining the selection criteria and objectives, the following potential tools were selected for 
comparison, as they show their applicability in security reduction: 

● Black Duck (Synopsys), it automates open-source security and licensing compliance for 
developers and security teams. While its primary job is to manage open-source components, 
it indirectly tackles technological debt by identifying and addressing possible risks early in 
the development process. Key metrics addressed are likely to include vulnerability numbers, 
license compliance status, and maybe code coverage for security checks (Lallet et al.,2008). 

● Sonatype Nexus, Nexus is primarily a software component repository manager that includes 
security tools for identifying component vulnerabilities. It helps to reduce technological debt 
by organizing component management and implementing security checks. Metrics might 
include vulnerability numbers, dependency management efficiency, and even licensing 
compliance (Vojnović, 2023). 

● Veracode SCA, it is specifically developed to examine code for licensing conflicts and open-
source vulnerabilities, addressing technological debt by identifying possible security issues 
early in the development process. Typical metrics include vulnerability numbers, license 
compliance status, and possibly code coverage connected to vulnerability scans (Singh, 2024). 

● Snyk is a cloud-native open-source security platform That provides vulnerability scanning 
and code repair. It contributes to reducing technical debt by giving rapid feedback on 
vulnerabilities and remedy choices. Metrics would most likely include vulnerability counts, 
repair rates, and maybe code quality metrics linked to security (D et al., 2023). 

● OWASP Dependency-Check, this open-source program detects open-source components 
and scans for known vulnerabilities. While primarily concerned with vulnerability detection, 
it helps to reduce technological debt by flagging potential security issues. Vulnerability 
numbers and dependency management efficiency are two potential metrics (Cadariu et al., 
2015).  

● FOSSA, it is a cloud-based platform for managing open-source dependencies and detecting 
security issues. It contributes to the reduction of technological debt by making open-source 
components and their associated risks visible. Metrics might include vulnerability numbers, 
license compliance status, and a review of open-source component use (Zhang, 2020). 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

218
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

● Aqua Security, which specializes in containerized application security, indirectly reduces 
technological debt by securing essential elements. Metrics would most likely include 
vulnerability numbers in container images, compliance status, and maybe deployment speed 
(Makani& Jangampeta, 2024). 

● SQLError, it is specifically developed to detect SQL injection vulnerabilities, addressing 
technological debt by flagging a common security issue. Metrics would primarily focus on 
SQL injection vulnerability numbers and, maybe, code coverage for SQL injection checks 
(Cebollero et al.,2015). 

● Fortify on Demand (Micro Focus), it is a cloud-based tool for application security testing 
that includes SCA. It helps decrease technical debt by discovering and fixing vulnerabilities. 
Metrics will likely include a wide range of security vulnerabilities, code quality metrics, and 
maybe compliance status (Hellström, 2009). 

● Trivy, it is vulnerable package scanner for container images. It solves technological debt by 
detecting possible security concerns in containerized systems. Metrics would primarily focus 
on vulnerability numbers in container images and maybe image creation efficiency (Zarei, 
2022). 

Software Composition Analysis Tool Comparison 

Software Composition Analysis (SCA) tools are crucial for identifying and managing software 
vulnerabilities. To assist organizations in choosing the best option, this research assesses several 
popular SCA tools, outlining their strengths and weaknesses and recommended usage. 

Key Features and Capabilities of SCA Tools 
SCA tools include several features to help you find and fix software vulnerabilities. Here is an 
overview of some important tools: 

● Black Duck, Black Duck's SCA and SBOM (Software Bill of Materials) development 
capabilities assist organizations in efficiently managing open-source components. This lowers 
security debt by detecting vulnerabilities early in the development process and helps with 
licensing compliance by monitoring utilized components and licenses (Lallet et al., 2008). 

● Sonatype Nexus, while Nexus is essentially repository management, its integrated SCA 
features assist in identifying vulnerabilities in components stored within the repository. This 
helps to reduce security debt by identifying risks before deployment. However, handling 
external dependencies might require extra tools (Vojnović, 2023). 

● Veracode, it offers complete SCA in addition to other security testing technologies, providing 
a complete solution to application security. This helps reduce security debt by detecting 
various vulnerabilities and verifying compliance through licence checks (Singh, 2024). 

● Snyk, snyk's extensive SCA capability and smooth integration with CI/CD pipelines enable 
early vulnerability identification. This considerably reduces security debt by moving it to the 
left. Automated vulnerability identification and fix ideas assist in more efficient debt reduction 
(D et al., 2023). 

● OWASP Dependency-Check, a lightweight open-source tool, is successful in identifying 
vulnerabilities in open-source components. While its major aim is vulnerability identification, 
it also helps to reduce security debt by noticing possible threats (Cadariu et al.,2015). 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

219
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

● FOSSA, it focuses on open-source SCA and licensing compliance and assists organizations 
in managing open-source components in a secure ethical manner. By discovering 
vulnerabilities and licence breaches, FOSSA helps to reduce security debt and ensure 
compliance (Zhang, 2020). 

● Aqua Security, Aqua Security's container security platform now includes SCA, providing 
full protection for cloud-native settings. This helps reduce security debt by addressing 
vulnerabilities in container images, a significant component in modern systems (Makani& 
Jangampeta, 2024). 

● SQLError, it is specifically built to address SQL injection vulnerabilities, a common security 
problem. By detecting these vulnerabilities, we may reduce security debt and increase 
application security (Cebollero et al., 2015). 

● Fortify on Demand, with its strong SCA capabilities and integration with development 
lifecycles, allows for early vulnerability identification and mitigation. This reduces security 
debt by detecting and resolving vulnerabilities throughout the development phase (Hellström, 
2009). 

● Trivy: a lightweight, open-source vulnerability scanner for container images, is successful at 
identifying possible vulnerabilities. This helps reduce security debt by assuring the security 
of containerized applications (Zarei, 2022). 

Understanding the major characteristics and capabilities of different SCA tools allows organizations 
to pick the best solutions for their unique security and compliance requirements, eventually reducing 
security debt and enhancing overall application security. 

Strengths and Weaknesses of SCA Tools 

It's important to know the SCA tool's strengths and weaknesses with respect to the project's needs 
before selecting it.   

Snyk, Veracode, and Fortify on Demand 
● Snyk, it provides wide vulnerability detection, easy interaction with CI/CD pipelines, and 

prioritization features. While these advantages contribute to quick security debt reduction, 
complex systems may necessitate additional configuration work (D et al., 2023). 

● Veracode, it offers complete SCA and security testing tools. This comprehensive strategy can 
effectively reduce security debt. However, the price approach may be too expensive for large-
scale implementations (Singh, 2024). 

● Fortify on Demand, it provides comprehensive code analysis and integration into 
development workflows. This can result in earlier vulnerability detection and reduced security 
debt. However, the subscription approach may not be appropriate for smaller companies with 
low funding (Hellström, 2009). 

FOSSA and OWASP Dependency Check 
● FOSSA, it helps managing open-source licenses, therefore reducing legal concerns and 

associated security consequences. However, vulnerability detection skills may be more 
limited than commercial options, thereby affecting security debt reduction (Zhang, 2020). 

● OWASP Dependency-Check, it is a free and open-source solution for identifying 
fundamental vulnerabilities. While it can be a useful starting point for reducing security debt 
(Cadariu et al., 2015). 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

220
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

 Black Duck and Sonatype Nexus 
● Black Duck, it offers robust SBOM development and integration capabilities, which help in 

supply chain security and compliance. However, managing complicated projects can be 
difficult, affecting efficiency and security debt reduction (Lallet et al., 2008). 

● Sonatype Nexus, it provides powerful repository and product management capabilities. 
While useful for component management, it may need the use of extra tools for external 
dependency management, affecting the overall security posture (Vojnović, 2023). 

Aqua Security and Trivy 
● Aqua Security, it offers full container security, such as vulnerability screening, compliance 

checks, and runtime protection. This can greatly reduce security debt in cloud-native 
situations. However, it may be overkill for standard applications (Makani& Jangampeta, 
2024) 

● Trivy, it provides lightweight container image scanning, making it ideal for fast vulnerability 
evaluation. While it is useful for basic assessments, it may fall short when compared to 
commercial products in terms of vulnerability complexity (Zarei ,2022). 

SQLError 
 It is designed specifically for SQL injection vulnerabilities, and SQLError successfully fights this 

threat. However, its reach is restricted, and it may not be enough to meet larger SCA standards 
(Cebollero et al., 2015). 

The following table presents a comparative analysis of various software composition analysis 
(SCA) tools. It highlights the key features and capabilities of each tool, enabling readers to select the 
most suitable SCA solution for their needs. 

Table 2 
Comparison Between SCA Tools 

Tool Vulnerability 
Scanning 

License 
Management 

CI/CD 
Integratio
n 

SBOM 
Generation 

Open-
source 

Container 
Scanning 

SAST 
Capabilities 

Cloud-
based 

Black Duck 
(Synopsys) 

Yes Yes Yes Yes No No No Yes 

Sonatype 
Nexus 

Yes Limited Yes No No No No Yes 

Veracode 
SCA 

Yes Yes Yes No No Yes Yes Yes 

Snyk Yes Basic No No Yes No No Yes 

OWASP 
Dependency

-Check 

Yes No Yes No Yes No No Yes 

FOSSA Yes 
(Limited) 

Advanced Yes No Yes Yes No Yes 

Aqua 
Security 

Yes No Yes No Yes Yes No Yes 

SQLError No No No No No No No No 

Fortify on 
Demand 
(Micro 
Focus) 

Yes No Yes No No Yes No No 

Trivy Yes No Yes No Yes Yes Yes Yes 

Source: Prepared by the authors. 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

221
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

As shown in Table 2, a wide range of SCA tools are available to meet the requirements of various 
organizations. While Snyk, Veracode, and Fortify on Demand provide extensive functionality, their 
cost and complexity may make them unsuitable for smaller applications. FOSSA and OWASP 
Dependency- Check shine in open-source management, while commercial solutions frequently 
provide more complete vulnerability detection. Black Duck and Sonatype Nexus go beyond basic 
SCA; however, they may require more tools or incur greater expenses. Aqua Security and Trivy 
dominate container security, but SQLError addresses a specific database problem. 

Finally, the best SCA tool depends on an organization's requirements, budget, and development 
environment. 

Selection for the Most Appropriate SCA Tools 

This section explores how different types of companies may use Software Composition Analysis 
(SCA) tools to meet their security requirements. 

Applications of SCA Tools 

This section explains how organizations in the real world employ software composition analysis 
(SCA) techniques to handle security concerns. As illustrated in Table 3, the application of SCA 
approaches can reduce security debt. The specific use cases listed in Table 3 illustrate how these 
technologies can be used to solve various security problems. Table 3 suggests software composition 
analysis (SCA) solutions for various domains depending on industry, project size, and security needs. 
It advises on picking the best SCA tool to meet certain security concerns. 

Table 3 
Choosing the Right SCA Tool: A Practical Guide 

Tool Suitable Fields Justification Reference 
Black Duck 
(now part of 

Synopsys) 

General SCA across 
industries (e.g., 
telecommunications, 
manufacturing, 
healthcare) 

Black Duck's extensive feature set, which 
includes vulnerability detection, licensing 
compliance, and software composition 
analysis, makes it an adaptable alternative 
for a variety of organizations. The ability 
to manage large-scale projects and 
interact with numerous development tools 
is very useful in complicated contexts. 

(Lallet et al.,2008) 

Sonatype 
Nexus 

Software development, 
DevOps (e.g., 
technology, finance, 
retail) 
 

Sonatype Nexus excels in software 
component management and effectively 
adds security measures into the 
development cycle. Its focus on product 
dependency management makes it ideal 
for DevOps organizations and teams that 
value speed and efficiency. 

(Vojnović, 2023) 

Veracode 
SCA 

Software development, 
application security 
(e.g., technology, 
education, 
government) 
 

Veracode SCA provides a powerful 
platform for static and dynamic 
application security testing, making it 
appropriate for organizations that value 
thorough vulnerability assessment. The 
focus on application security is consistent 
with businesses subject to tight, satisfying 
regulatory requirements. 

(Singh, 2024) 

Snyk Software development, 
DevOps, cloud 
security (e.g., 

Snyk's cloud-native platform and focus on 
developer-first security make it ideal for 
current development patterns. Its strengths 

(D et al., 2023) 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

222
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

telecommunications, 
media & 
entertainment, 
automotive) 

in container and cloud security are in line 
with the requirements of organizations 
using cloud-based architectures. 

OWASP 
Dependency

-Check 

Open-source projects, 
security researchers 
(all industries) 

Dependency-Check is an open-source tool 
that is free to use for projects of any size. 
Its major focus on discovering 
vulnerabilities in open-source components 
makes it useful for organizations 
concerned with supply chain security. 

(Cadariu et 
al.,2015). 

FOSSA Open-source projects, 
license compliance (all 
industries) 

FOSSA excels at managing open-source 
licenses and ensuring compliance, making 
it important for organizations with 
complicated software supply chains. The 
ability to detect possible legal concerns 
linked with open-source usage is critical 
for risk management. 

(Zhang, H., 2020) 

Aqua 
Security 

Containerized 
applications, cloud 
security (e.g., cloud 
providers, 
telecommunications, 
financial services) 

Aqua Security offers complete security 
for containerized settings, including 
vulnerability screening, runtime 
protection, and compliance. Its emphasis 
on cloud-native apps makes it ideal for 
organizations implementing 
containerization plans. 

(Makani& 
Jangampeta, 2024) 

SQLError Static application 
security testing 
(SAST) (all industries) 

SQLError specializes in identifying SQL 
injection flaws, which are a serious 
security issue. Its emphasis on a single 
danger area makes it an invaluable tool 
for organizations that prioritize database 
security. 

(Cebollero et al., 
2015) 

Fortify on 
Demand 
(Micro 
Focus) 

Broad SCA use cases 
(e.g., technology, 
healthcare, 
government) 

Fortify provides a complete platform for 
application security testing, which 
includes SCA, SAST, and DAST. Its 
extensive feature set and scalability make 
it ideal for organizations with complex 
security needs. 

(Hellström, 2009) 

Trivy Container security, 
vulnerability scanning 
(e.g., cloud providers, 
DevOps, containerized 
applications) 

Trivy is a lightweight and efficient 
vulnerability scanner for container 
images. Its emphasis on container security 
is consistent with the demands of 
organizations using containerization. 

(Zarei, 2022) 

Source: prepared by the authors 

 Result Analysis of Different SCA Tool Deployment 

Deploying SCA technologies offers several advantages to organizations trying to improve their 
security posture. Here's a closer look at some key results: 

● Improved Vulnerability Detection, SCA tools do more than identifying vulnerabilities. 
They may review the codebase to determine the specific location of the vulnerability, evaluate 
its impact and the potential to determine how serious it is, and even make recommendations 
for possible fixes. Developers can effectively identify vulnerabilities and prioritize fixes with 
the help of this complete information. 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

223
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

● Reduced Security Debt, by proactively resolving vulnerabilities identified by SCA tools, 
organizations may decrease their security debt and the attack surface for potential attackers. 

● Streamlined Patch Management, SCA tools can automate vulnerability identification and 
prioritization, allowing development and security teams to focus on patching the most critical 
vulnerabilities first. 

● Increased Developer Productivity, SCA tools may be integrated into development 
workflows to provide developers with real-time alerts about vulnerabilities in their code. This 
enables them to patch vulnerabilities earlier in the development cycle, eliminating rework and 
saving time and effort. 

● False Positives and Ongoing Challenges, it is critical to recognize that SCA tools can 
occasionally provide false positives, requiring manual verification by security professionals. 
Additionally, updating SCA tools with the most recent vulnerability databases is critical to 
their usefulness. 

 Conclusion and Future Directions 
An organization's security posture is seriously threatened by security debt, which is the 

accumulation of unresolved security vulnerabilities. The negative consequences of security debt were 
discovered by this study, which include a higher chance of breaches, data loss, and reputational 
damage. Tools with features associated with security debt measures, data exchange, usability, and 
availability were given a lot of weight throughout the selection process. Following these criteria, a 
several practical choices were discovered, including commercial services like Snyk, Veracode, and 
Black Duck and open-source alternatives like OWASP Dependency-Check and Trivy. The ultimate 
decision will be based on how well these tools correspond with the specific study objectives and 
available resources. The study tries to give useful insights into the capabilities of various security 
debt reduction solutions. The findings will help organizations gain a better knowledge of how to pick 
and use these tools effectively to manage and reduce security debt.  

Figure 6 shows the essential stages involved in effectively managing technical debt, including 
reviewing existing code, identifying problems, recommendations, detailed action plans and 
implementation of the solution. By following these steps, organizations can proactively address 
technical debt and improve the overall health and sustainability of their software systems. Addressing 
security debt may greatly enhance an organization's overall security posture. This results in better 
data protection, a lower chance of cyberattacks, and more compliance with security regulations. 

Figure 6 
Managing Technical Debt 

 
Source: (10Pearls, n.d.). 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

224
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

Several aspects require more investigation to strengthen security debt management practices, such as:  
 

● Improved Measurement Techniques, it is critical to develop more precise and consistent 
ways of measuring security debt. This would allow organizations to properly measure their 
security debt load and track how it is reduced over time. 
 

● Prioritization Frameworks, which assist organizations in determining which security 
vulnerabilities to address first, would be extremely beneficial. These frameworks might take 
into consideration risk, possible damage, and simplicity of clean-up. 
 

● The Impact of New Technologies, emerging technologies like automation and machine 
learning have the potential to revolutionize security debt management. More study is needed 
to determine how these tools may be used to automate vulnerability detection, patching 
methods, and security debt tracking (Dissanayake et al., 2022(. 
 

● The Role of Security Culture, creating a strong security culture inside organizations is 
critical for avoiding the build-up of security debt in the first place. Further study might look 
into ways to foster a culture of security knowledge, ownership, and continual improvement. 
 

● Recognizing the Consequences of Security, organizations may enhance their overall 
security posture and minimize the risk of cyberattacks by recognizing the consequences of 
security debt and taking proactive actions to control it through improved assessment, 
prioritization, and the use of new technologies. Furthermore, cultivating a strong security 
culture may assist in avoiding the building of security debt in the first place, resulting in a 
more secure digital ecosystem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

225
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

References 
 
10Pearls. (n.d.). Technical debt management https://10pearls.com/technical-debt-management/ Accessed 

15/9/2024 

Arntzen Toftegaard, Ø. A. (2022). An effect analysis of ISO/IEC 27001 certification on technical security of 
Norwegian grid operators. In 2022 IEEE International Conference on Big Data (Big Data), 2620–2629. 
IEEE. https://doi.org/10.1109/BigData55660.2022.10020529 

Barlow, C., Walklate, S., & Johnson, K. (2021). Risk refraction: Thoughts on the victim-survivor’s risk journey 
through the criminal justice process. International Journal for Crime, Justice and Social Democracy, 10(3), 
177-190. https://search.informit.org/doi/10.3316/informit.026564949450511  

Bernardo, G. (2022). DevSecOps pipelines improvement: new tools, false positive management, quality gates 
and rollback (Master’s Thesis, Politecnico di Torino). Politecnico di Torino.  

Cadariu, M., Bouwers, E., Visser, J., & Van Deursen, A. (2015). Tracking known security vulnerabilities in 
proprietary software systems. In 2015 IEEE 22nd International Conference on Software Analysis, 
Evolution, and Reengineering (SANER), 516-519. IEEE. 

Cebollero, M., Natarajan, J., Coles, M. (2015). Error handling and dynamic SQL. In: Pro T-SQL Programmer's 
Guide. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-0145-9_18 

Cifuentes, C., Gauthier, F., Hassanshahi, B., Krishnan, P., & McCall, D. (2023). The role of program analysis 
in security vulnerability detection: Then and now. Computers & Security, 135, 103463. 
https://doi.org/10.1016/j.cose.2023.103463.  

Coetzer, C., and Leenen, L. (2024). Managing cyber security debt: strategies for identification, prioritization, 
and mitigation. In Proceedings of 19th International Conference Cyber Warfare and Security (ICCWS), 
19(1), 439-446. doi: 10.34190/iccws.19.1.2178.   

D, S., M K, N., Ashok Kumar, R., & Nidugala, M. (2023). To detect and mitigate the risk in continuous 
integration and continues deployments (CI/CD) pipelines in supply chain using Snyk tool. In 2023 7th 
International Conference on Computation System and Information Technology for Sustainable Solutions 
(CSITSS), 1-10. DOI:10.1109/CSITSS60515.2023.10334136  

Debricked. (2021, October 11). SCA Tools Overview. https://debricked.com/blog/sca-tools-overview/ 

Dissanayake, N., Jayatilaka, A., Zahedi, M. & Babar, M.A. (2022). An empirical study of automation in 
software security patch management. In Proceedings of the 37th IEEE/ACM International Conference on 
Automated Software Engineering, 1-1.  

Dudee, Y. (2021). Exploration of technical debt in plan-based vs. agile processes: A standard literature 
review. FinalPaper_TechnicalDebt-converted2 (1).pdf 

Hellström, P. (2009). Tools for static code analysis: A survey [PhD Thesis, Linköping University- 
Department of Computer and Information Science]. Linköping University. 
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16658  

Holcomb, J. (2009, May 11-12). Auditing cyber security configuration for control system applications. In 
2009 IEEE Conference on Technologies for Homeland Security, 7-13. IEEE. 
https://doi.org/10.1109/THS.2009.5168008 



Published by IDSCThe International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

226
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

Imtiaz, N., Thorn, S., & Williams, L. (2021). A comparative study of vulnerability reporting by software 
composition analysis tools. In Proceedings of the 15th ACM/IEEE International Symposium on Empirical 
Software Engineering and Measurement (ESEM), 1-11. IEEE. https://doi.org/10.1145/3475716.3475769  

Itech India. (2021, June 29).  Is technical debt the monster it is made out to be? 
https://itechindia.co/us/blog/is-technical-debt-the-monster-it-is-made-out-to-be/ 

Izurieta, C., Rice, D., Kimball, K., & Valentien, T. (2018). A position study to investigate technical debt 
associated with security weaknesses. In Proceedings of the 2018 International Conference on Technical 
Debt, 138-142. https://doi.org/10.1145/3194164.3194167  

Jakobsson, A., & Häggström, I. (2022). Study of the techniques used by OWASP ZAP for analysis of 
vulnerabilities in web applications (Master’s Thesis, Linköping University - Department of Computer 
and Information Science). Linköping University. https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-
186346 

Kim, J. (2020). Burp suite: Automating web vulnerability scanning [Master’s Thesis, Utica College]. Utica 
College. Burp Suite: Automating Web Vulnerability Scanning - ProQuest 

Kruke, M. M. (2022). Security debt in practice: A qualitative case study (Master’s thesis, University of Oslo). 
University of Oslo. masterthesis-maren-maritsdatter-kruke.pdf (uio.no)  

Lallet, J., Pillement, S., & Sentieys, O. (2008). Efficient dynamic reconfiguration for multi-context embedded 
fpga.  Proceedings of the 21st annual symposium on Integrated circuits and system design, 210-215. 
DOI:10.1145/1404371.1404428 

Li, Y., Soliman, M. and Avgeriou, P. (2023). Automatic identification of Self-admitted technical debt from 
four different sources. Empirical Software Engineering, 28(3), 65. https://doi.org/10.1007/s10664-023-
10297-9  

Makani, S. T., & Jangampeta, S. (2024). Devops security tools evaluating effectiveness in detecting and fixing 
security holes. International Journal of DevOps (IJDO), 1(2), 1-12. 

Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., & Pinto, G. (2019). Are static analysis 
violations really fixed? A closer look at realistic usage of SonarQube. In 2019 IEEE/ACM 27th 
International Conference on Program Comprehension (ICPC), 209–219. IEEE. 
https://doi.org/10.1109/ICPC.2019.00040 

Martinez, J., Quintano, N., Ruiz, A, Santamaria, I., De Soria, I., & Arias, J. (2021). Security debt: 
Characteristics, product life-cycle integration and items. In Proc. 2021 IEEE/ACM International 
Conference Technical Debt (TechDebt), 9-18. IEEE. doi: 10.1109/TechDebt52882.2021.00009. 

McClintock, M. (202). 8 common sources of security debt (& tips to address each). Better AppSec. 
https://betterappsec.com/8-common-sources-of-security-debt-tips-to-address-each-f42de8e45bb7  

Melo, A., Fagundes, R., Lenarduzzi, V., & Santos, W.B. (2022). Identification and measurement of 
requirements technical debt in software development: A systematic literature review. Journal of Systems 
and Software, 194(c), 111483. https://doi.org/10.1016/j.jss.2022.111483 

Olsson, J., Risfelt, E., Besker, T., & Martini, A., Torkar, R. (2021). Measuring affective states from technical 
debt: A psychoempirical software engineering experiment. Empirical Software Engineering. 26. 105. 
https://doi.org/10.1007/s10664-021-09998-w  

Ombredanne, P. (2020). Free and open source software license compliance: Tools for software composition 
analysis. Computer, 53(10), 105–109. https://doi.org/10.1109/MC.2020.3011082 



The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

227
Comparative Evaluation of Software Composition 
Analysis Tools in Context of Technical Debt Reduction

Pai, S & Kunte, S. (2022). A Comprehensive analysis of automated threat modelling solution company: Threat 
modeler software, Inc. In International Journal of Case Studies in Business, IT and Education (IJCSBE), 
6(2), 99–107. DOI:10.47992/IJCSBE.2581.6942.0186 

Rahalkar, S. (2019). OpenVAS. In: Quick start guide to penetration testing. Apress, Berkeley, CA. 
https://doi.org/10.1007/978-1-4842-4270-4_2 

Rahman, M. M., Barek, M. A., Akter, M. S., Riad, A. K. I., Rahman, M. A., Shahriar, H., Rahman, A., & Wu, 
F. (2024). Authentic learning on DevOps security with labware: Git hooks to facilitate automated security 
static analysis. In Proc. of 2024 IEEE 48th Annual Computers, Software, and Applications Conference 
(COMPSAC), 2418-2423. IEEE. 

Rindell, K., Bernsmed, K., & Jaatun, M.G. (2019). Managing security in software: Or: How I learned to stop 
worrying and manage the security technical debt. In Proceedings of the 14th International Conference on 
Availability, Reliability and Security, 1-8. DOI:10.1145/3339252.3340338 

Rios, N., Neto, M.G. and Spínola, R.O. (2018). A tertiary study on technical debt: Types, management 
strategies, research trends, and base information for practitioners. Information and Software Technology, 
102, 117-145. 

Sharma, M., Desai, D., Arun, A. R., L. P., & Rajagopalan, N. (2024). OpenVAS vs the rest: Unveiling the 
competitive edge in vulnerability scanners. In 2024 3rd International Conference for Innovation in 
Technology (INOCON), 1-6. IEEE. https://doi.org/10.1109/INOCON60754.2024.10511864 

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., Chatzigeorgiou, A., Tzovaras, D., Anicic, N., Gelenbe, 
E. (2019). An empirical evaluation of the relationship between technical debt and software security. 
10.13140/RG.2.2.15488.79365   

Singh, A. (2024). Microservices security vulnerability remediation approach using Veracode and 
Checkmarx. Journal of Artificial Intelligence General Science (JAIGS), 4(1), 145–151. 
https://doi.org/10.60087/jaigs.v4i1.128 

Stepsize. (2021). The state of technical debt 2021: What engineers think about technical debt and its impact 
on team morale, velocity, and customer experience (Survey). https://assets.website-
files.com/5f922f81cc30586744dc7122/60e306c6db6224328eaf47a3_Tech%20debt%20report.pdf 

TatvaSoft Blog. (2023, December 12). Guide to software composition analysis.  
https://www.tatvasoft.com/outsourcing/2023/12/software-composition-analysis.html 

Vojnović, J. (2023). Mitigating supply chain attacks through detection of high-risk software dependencies. 
J_Vojnovic___Mitigating_supply_chain_attacks_through_detection_of_high-
risk_software_dependencies.pdf (ru.nl)  

Zaimi, A., Ampatzoglou, A., Triantafyllidou, N., Chatzigeorgiou, A., Mavridis, A., Chaikalis, T., 
Deligiannis, I., Sfetsos, P., Stamelos, I. (2015). An empirical study on reusing third-party libraries in 
open-source software development. In Proceedings of the 7th Balkan Conference on Informatics 
Conference (BCI '15). Association for Computing Machinery, 1–8. 
https://doi.org/10.1145/2801081.2801087  

Zarei, M. (2022). Investigating the inner workings of container image vulnerability scanners (Master's thesis, 
Oslo Metropolitan University). https://oda.oslomet.no/oda-xmlui/bitstream/handle/11250/3017416/zarei-
acit2022.pdf?sequence=1&isAllowed=y 

Zhang, H. (2020). Comparison of open source license scanning tools. Bachelor Degree Project. 
FULLTEXT01.pdf (diva-portal.org)  



 
 
 

 تخفيض الديون الفنيةالتقييم المقارن لأدوات تحليل تكوين البرمجيات في سياق 
 

 المستخلص
"الدين الفني" في هندسة البرمجيات لوصف الحلول التقنية التي قد تكون عملية على المدى  يُستخدم مصطلح

البرمجيات على تقييم أدوات تحليل تكوين  تركز الدراسة .القصير ولكن لها عواقب ضارة على المدى الطويل
(SCA) Software Composition Analysis الديون ، ففي سياق تقليل الديون الفنية، وخاصة ديون الأمان 

وتسلط الدراسة  القرارات السريعة التي تؤدي إلى مشاكل في الصيانة والأمان في المستقبل.الفنية هي عواقب 
من خلال تحديد نقاط الضعف في  في ممارسات تطوير البرمجيات الحديثة SCAأهمية أدوات  على الضوء

يمكن لهذه الأدوات تقليل الديون الفنية بشكل كبير وتحسين و المصدر ومعالجتها بشكل فعال،  المكونات مفتوحة
المختلفة بناءً على قدراتها وسهولة  SCAأدوات  الدراسة بين . وقارنتالأمان والجودة العامة للتطبيقات البرمجية

فعالة في تقليل الديون الفنية،  SCAأن أدوات  . وتوصلت الدراسة إلىاستخدامها وفعاليتها في تقليل الديون الأمنية
مراعاة نوع التطبيق، وطرق التطوير، والموقف  SCAعلى المؤسسات عند اختيار أداة  يجب، و خاصة ديون الأمان

  .للمنظمةالأمني 

(، حل OSS)المصدر (، البرمجيات مفتوحة SCAالديون الفنية، تحليل تكوين البرمجيات ) دالة:الكلمات ال
 التبعية، هندسة النظم

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ندا مصطفى علي228
سمر خالد محمد
داليا احمد مجدي

المجلة الدولية للسياسات العامة في مصر - مجلد 3 - العدد )4( - أكتوبر 2024
ISSN: Print: 2812 - 4758 , Online: 2812 - 4766
تصدر عن مركز المعلومات ودعم اتخاذ القرار


