The International Journal of Public Policies In Egypt- Volume 3, Issue 4 (October 2024)
ISSN: Print: 2812-4758, Online: 2812- 4766
Published by IDSC

Comparative Evaluation of Software Composition Analysis
Tools in Context of Technical Debt Reduction

"School of Computer Science, Canadian International College, Cairo, Egypt
2 School of Computer Science, Canadian International College, Cairo, Egypt

3 Computer and Information System Department, School of Computer Sciences, Sadat Academy for
Management Sciences, Cairo, Egypt

Correspondence: Daliamagdi@gmail.com

W WP (YOS PEES FUPIS GRY B PN (P
il (gl paasss Blw 2

s 385 Y Cralll L) i€ sgaad) aalnll asle 2087
e 3alall IV Cenlomll Ll ST sgaall bt asle 3087

e 138 La0 Al astall calaleadl BeapalST L TN ekl asle 208 IV Canlondly cilaslaall @lad @uid
Daliamagdi@gmail.com :at.i,.!

= DOI: 10.21608/ijppe.2024.389252 URL: http://doi.org/ 10.21608/ijppe.2024.389252
m Received: 13/6/2024, Accepted: 25/9/2024

m Citation: Ali, N., Mohamed, S., & Magdi, D. (2024). Comparative Evaluation of Software
Composition Analysis Tools in Context of Technical Debt Reduction. The \ntemational
Journal of Puliic Policies W Egypy, 3(4), 206 - 228.

The International Journal of Public Policies In Egypt, Volume 3, Issue 3 (July 2024) Nada M. Ali
ISSN: Print: 2812-4758, Online: 2812- 4766 Samar K. Mohamed

Published by IDSC Dalia A. Magdi

Comparative Evaluation of Software Composition Analysis
Tools in Context of Technical Debt Reduction

Abstract

The metaphor of "technical debt" is used in software engineering to describe technical solutions that
may be practical in the short term but have a detrimental long-term consequence. Tools for software
composition analysis (SCA) are proposed to detect potential vulnerabilities presented by open-source
software (OSS) imported as third-party libraries. As software functionality becomes more
complicated, SCA tools may confront various scenarios throughout the dependency resolution
process, including diverse artifact formats, dependency imports, and dependence requirements. This
study provides a comparative review of SCA techniques in the context of technical debt reduction,
focusing on the analogous decisions and dynamics seen in systems engineering.

Keywords: Technical Debt, Software Composition Analysis (SCA), Open-Source Software (OSS),
dependency resolution, systems engineering

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 208

Introduction

In software engineering, "technical debt" is commonly used to describe the trade-off between rapid
development and the long-term maintainability of a software system (Dudee, 2021). This metaphor,
popularized by Ward Cunningham (Melo et al., 2022), represents the potential consequences of
prioritizing rapid development over strong codebases. A very dangerous type of technical debt is
"security debt," which results from vulnerabilities introduced during the software development
lifecycle. If not fixed, these security flaws might expose systems to attack, potentially resulting in
serious consequences.

The widespread use of open-source software (OSS) has had a considerable impact on development
processes, with developers increasingly turning to third-party libraries (TPLs) to speed up
development and improve application functionality (Zaimi et al., 2015). While this technique reduces
time-to-market, it also raises possible security issues, contributing to building security debt.

Software Composition Analysis (SCA) tools have evolved as critical components of current
software development processes to address these concerns. These tools check software projects for
vulnerabilities, license violations, and other security threats (Ombredanne, 2020). By recognizing
these concerns early in the development process, SCA tools can assist organizations in reducing
technical debt, particularly security debt, and improving software quality.

However, the value of SCA tools varies greatly, depending on aspects like the tool's accuracy,
performance, and the complexity of the software under analysis. The purpose of this study is to
evaluate SCA tools comprehensively to determine their usefulness in reducing security debt and to
give actionable information to organizations looking for ways to improve their software development
processes.

Security Debt

It is one of the technical debt types that refers to the vulnerabilities and bugs in a software system
during its entire life cycle. It is the common result of decisions taken during the development process
that value speed of delivery over effective controls (Siavvas et al., 2019). The following figure
illustrates the various sources that contribute to security debt within a software system.

Figure 1
Common Sources of Security Debt

Unnecesssary Complixity Cloud transformation “lift and shift”

Fast Tracking Code to Production Software dependencies

Security Debt

\/

Neglicting Modernization

Lack of lifecycle planning

Failing to consistently embed
security into the SDLC

Separation of concerns

Source: (McClintock, 2021).

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
209 Analysis Tools in Context of Technical Debt Reduction

As shown in Figure 1, the sources of accruing security debt can be severe. Unlike other types of
technical debt, which primarily influence maintainability and performance, security debt poses a
significant threat to a software system's integrity and safety.

Managing security debt requires a proactive strategy for addressing vulnerabilities. Software
Composition Analysis (SCA) tools are widely used for this purpose. By continuously monitoring and
analyzing the open-source components of a software project, SCA tools can find vulnerabilities early
and provide actionable insights to mitigate them. The proper use of SCA tools can dramatically
decrease security debt, ensuring that software is secure and resilient to possible threats.

The major objective of this research is to compare software composition analysis tools in the
context of technical debt reduction. The first step toward addressing this objective is to evaluate
various software composition analysis tools and analyze the results and findings. These tools are then
compared and evaluated based on seven different criteria.

After the introduction, this study is divided into sections: section 1 discusses the literature review,
section 2 tackles the importance of technical debt reductions, section 3 discusses the selection of the
most appropriate SCA tools, and the last section is the conclusion and future directions.

Literature Review

This section critically examines existing research on technical debt, aiming at identifying key
findings, theories, and methodologies that can guide future studies. By analyzing current work, this
evaluation will also pinpoint gaps in our understanding of technical debt and explain how the current
study uniquely contributes to this field.

Definition and Concept of Technical Debt

Cunningham first introduced the technical debt metaphor to explain the importance of refactoring
software to his management system (Melo et al., 2022). Technical debt describes the long-term
consequences of implementation decisions made during the software development process. These
implementation decisions concentrate on immediate benefits, such as shorter development time or
feature delivery, over long-term considerations, resulting in lower code quality, higher complexity,
and decreased maintainability. The technical debt life cycle describes how it may be introduced,
managed, and ultimately resolved within a software development project. Figure 2 illustrates the life
cycle of technical debt from its inception to its resolution, highlighting key stages and potential
consequences.

Figure 2
Technical debt life cycle

Pressure to increase
> Productivity

Leads T af Leaas Te
High technical debt | Low moral and 3 | ower productivity

motivation
Low code guality \/

Source: (Itech India, 2021, June 29).

Understanding the life cycle of technical debt, as shown in Figure 2, is essential for effectively
controlling and minimizing its negative effects on software quality and sustainability. Different types

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 210

of technical debt were introduced, including design, code, test, documentation, and security debt.
Each one influences a different aspect of software development (Li et al., 2023), as:
e Design debt refers to architectural or design decisions that consider short-term gains but may
hinder future scalability or extensibility.
e Code debt occurs when developers choose an easy way to finish a feature instead of the best
practice, which could take more time.
e Test debt happens when testing tasks are postponed or compromised during software
development.
e Documentation debt is a lack of or outdated documentation that prevents the understanding and
maintenance of a software system.
e Security debt focuses on vulnerabilities and weaknesses developed during the software
development process, which provide security risks that attackers can exploit.

Importance of Composition Analysis Tools

Software composition analysis (SCA) is a technique used to discover and manage open-source
components and licensing (Ombredanne, 2020). As shown in Figure 3, this technique uses a
thorough analytic process to discover vulnerabilities. It ensures that all components, including
open-source dependencies, meet demanding quality and security criteria before being integrated.
This comprehensive strategy helps prevent threats while improving the software's overall security
and dependability.

For any modern-day software product, the equivalent, or more, number of lines of code of open-
source software is utilized. From Stack Overflow, GitHub, PyP1i, or any code-related query online,
you will find results and offer more reusable code that can be directly plugged into any product.
SCA provides higher speed, convenience, better solutions, debugged versions, and smaller
investments, which are helpful for start-ups or larger organizations (Imtiaz et al., 2021). Figure 3
illustrates the sequential steps involved in the software composition analysis process.

Figure 3
Software Composition Analysis Workflow

CPE Product Directory
Package URL DEpandenoy Stem ’\/—‘ Depenvancy Track w

N
Clone Source Code
i
Intellij IDEA / \ Jenkins c P
ot ject
Validate POM J u-:s e Projec

Validate Effective POM

Source: (TatvaSoft Blog, 2023, December 12)

Configure

Build Now

These tools play an important role in modern software development environments for several

compelling reasons:

e Tracking open-source components, SCA tools help automatically detect the open-source libraries
used and generate a report, ensuring developers know what they are using and can quickly address
potential issues.

e Eliminating Business Risks, while open-source components might be advantageous, they can also
pose unexpected threats to a firm. Using old or vulnerable components exposes software to attack.
SCA assists in recognizing these risks early, allowing firms to take proactive measures to ensure
software stability.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction

21

e Continuous vulnerability detection and monitoring, it is important to have a continuous
monitoring technique because new vulnerabilities are identified daily. SCA composition analysis
offers continuous vulnerability detection and monitoring, highlighting vulnerabilities in real-time
and enabling quick action.

e Automated and Prioritized Vulnerability Remediation, one of the most notable aspects of SCA is
its ability to not only discover vulnerabilities but also prioritize them depending on severity. This
ensures that the most serious vulnerabilities are addressed first, automating most of the
remediation process and making better use of resources.

e Reducing security costs, investing in (SCA) Software Composition Analysis may appear to be an
additional expenditure, but in the long term, it considerably saves security costs. You can avoid
costly patches and potential breaches by identifying vulnerabilities early on.

This research aims to fill the gaps by doing a comparative analysis of SCA tools, focusing on their
ability to decrease security debt. It provides a complete review to help organizations choose the best
SCA tool for their needs by assessing essential features, performance, and integration possibilities.

Related Works

To speed up development, software engineers usually create security debt, a backlog of security
vulnerabilities that must be fixed later. This section examines existing research on recognizing,
quantifying, and managing security debt to improve software system security. While previous
research has improved our knowledge of security debt, important research gaps remain, as there are
no clear criteria for evaluating security debt.

Understanding the consequences of ignoring security debt is critical since it can result in serious
system vulnerabilities, financial losses, and reputational harm. This research will develop a uniform
methodology for quantifying security debt and analyze the link between security debt and software
quality attributes. By filling these research gaps, this study contributes to a better understanding of
security debt and its effects on software systems.

Coetzer and Leenen (2024) delved into cybersecurity debt, mentioning that cybersecurity debt is
a form of technical debt that focuses on finding security vulnerabilities in IT systems, which increases
due to resource limitations, time constraints, and a lack of expertise, potentially leading to serious
security breaches. The study highlighted the importance of identifying, prioritizing, and mitigating
cyber security debt and the escalating risks of delaying its repayment. Using a detailed analysis and
a case study of the Equifax breach, the study defined the real-world consequences of skipping security
debt management.

Cifuentes et al. (2023) researched developing program analysis tools for finding security
vulnerabilities in industrial environments. The study underlined that the successful utilization of these
tools by development companies depends on low false-positive rates, ease of integration, scalability,
and straightforward results. Analysis techniques have evolved to address a variety of programming
languages and security concerns, including memory-related vulnerabilities in C and injection
vulnerabilities in Javascript and Python. The study proposed an intelligent application security vision
in which integrated technologies share information and address new concerns, such as supply chain
security.

Kruke (2022) investigated the concept of security debt within software systems, defining it as
choices that could be design choices or implementation choices. These choices could slow down
achieving the optimal security goal. By doing an exploratory case study on 26 different software, the
study dived into how security debt is managed and how it can be a part of technical debt. The study
defined three main methods for managing security debt. The result indicated the necessity of security-

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 212

oriented management approaches and revealed that inadequate security knowledge can lead to
increased security debt. The paper also settled a connection between security debt and technical debt.

Imtiaz et al. (2021) investigated the differences in vulnerability reporting using different software
composition analysis tools, which are used to follow vulnerabilities in third-party libraries and
frameworks. By analyzing nine industry-leading SCA tools on a large web application, OpenMRS,
which includes Maven (Java) and npm (JavaScript) projects, this research demonstrated the
differences in the number of vulnerabilities that have been reported using different tools, ranging
from 17 to 332 for Maven and 32 to 239 for npm projects.

Martinez et al. (2021) demonstrated proactive security management in diverse industries. The
paper focused on applying inadequate solutions to achieve desired security levels, highlighting the
challenges companies face in addressing and explicitly stating security debt items and defining
security debt as a result.

Rindell et al. (2019) focused on discussing the under-prioritization of security in software
development, in which developers sometimes lack awareness of security practices. The study
proposed identifying security risk as a type of technical debt. Based on this proposal, it identified the
concept of security debt, which encompassed security risks within TD categories such as
requirements, architecture, code, and testing.

Izurieta et al. (2018) addressed the management of technical debt in the context of security breaches
identified through the design phase of software development. The study goal was to establish a
method for finding TD linked to security weaknesses. This study also defined security debt as a
special case within the technical debt management system that should be considered due to the
potential different business impacts of unfounded security weaknesses.

Technical debt is a metaphor for the consequences of poor technical decisions, and it includes
security debt, which is produced by ignoring security during software development. Viewing security
debt through the perspective of technical debt theory allows us to identify underlying causes,
prioritize essential efforts, and design effective management solutions. Existing review papers
generally address the nature, effects, and management of security debt. Table 1 compares the current
study with other review studies, highlighting definitions, quantification, and management strategies.

Table 1
Comparison Between Other Review Papers
Study Definition of Security Debt Quantification Method Management Strategies

Coetzer& Form of technical debt related to _ Prioritization and mitigation of
Leenen . e Risk assessment .

security vulnerabilities cyber security debt
(2024)
Kruke Choices that 1lmlt achieving optlmal Qualitative analysis Security_orien‘[ed management
(2022) security goals approaches
Martinez et| Inadequate solutions to achieve Case studies Proactive security
al. (2021) desired security levels management

vulnerabilities and bugs that have Key features and

Current happened in a software system capabilities of each SCA | Vulnerability Management
Study during its entire life cycle tool

Source: Prepared by the authors.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
213 Analysis Tools in Context of Technical Debt Reduction

SCA tools, which look for vulnerabilities in software components, appear to be a good solution to
manage security debt. While few studies have mentioned SCA, a lack of attention is paid to its
significance in decreasing security debt. This study seeks to close this gap by thoroughly evaluating
SCA tools and their usefulness in finding, prioritizing, and fixing vulnerabilities. By overcoming past
research constraints and conducting a targeted investigation of SCA tools, it contributes to a better
understanding of security debt. It provides practical insights for organizations looking to enhance
their software security posture.

Importance of Technical Debt Reduction

According to Stepsize’s survey (Stepsize, 2021), 58% of businesses lack a mechanism for reducing
technical debt, despite 60% of engineers warning about the negative impact on the company. Figure
4 shows the negative consequences of increasing technical debt in software development. It highlights
the possible consequences on project schedules, development costs, code quality, and overall system
performance. Figure 4 illustrates the consequences of accumulated technical debt on software
development projects.

Figure 4
Consequences of Technical Debt
e
A Associated With Development
TD items :
Artifact
<4 Cost Impact
C < Value Impact
onsequences < Schedule Impact
< Quality Impact

Source: (Olsson et al., 2021).

Working with outdated systems becomes more difficult than it should be due to technical debt. It's
an uncomfortable reality for developers and entrepreneurs. Moreover, the cost of technical debt rises
considerably with time. Thus, the sooner your business addresses these loans in your codebases, the
better.

Figure 5 shows the significant advantages that can be achieved by effectively reducing technical
debt. The figure outlines three primary categories of benefits, each with its own set of positive
outcomes:

1. Productivity, reducing technical debt makes it easier for the development team to provide new
features, resolve defects, and deliver high-quality software. It also improves their morale because
they can provide more value faster.

2. Product quality, a well-planned system can support a wider feature set than a badly developed
one. As a result, reducing technical debt can help create better products with fewer bugs and
vulnerabilities.

3. Maintainability and scalability, a good codebase is much easier to maintain than an ill-conceived
one. Reducing technical debt will reduce the cost of overall future maintenance because it will be
much easier for the developers to understand the codebase and immediately start working on it.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 214

Figure 5
Core Features of SCA Tools

pr——— (;0vern Open Source Usage i

Core Features of SCA Tools Identify and Help Reduce Security Vulnerabilities @

b Eyaiyate Project Sustainability @

Source: (Debricked, 2021- October 11).

Reducing technical debt is an important factor for success and efficiency in modern software
development, as unfixed technical debt leads to software errors. By managing and reducing technical
debt wisely, businesses can enhance development processes and product reliability and make sure
that their systems remain adaptable and robust in the face of future challenges (Rios et al., 2018).

Methodology

A combination of tools, including static code analysis, vulnerability scanners, and risk assessment
frameworks, are essential for calculating security debt and setting priorities in software development
projects.

Accurately measuring security debt and successfully prioritizing vulnerabilities are still important
issues in software development. While several tools and methodologies have been developed, a
standardized approach to these tasks remains absent. This study intends to address these problems by
performing a comparative review of existing methods for assessing and analyzing security debt
reduction measures. By studying these tools, we want to determine their strengths, shortcomings, and
prospects for solving the challenges of security debt management.

This section thoroughly explains the methodologies used to assess and analyze various options for
lowering security debt (Rindell et al., 2019). This serves as the basis for this comparative study.

A variety of technologies may be employed to calculate security debt and prioritize vulnerabilities,
each with its own set of features and capabilities.

Tool Categories

This section helps you categorize tools based on their functions, making it easier to understand the
wide range of tools available and choose the most appropriate one for your specific needs.

Static Analysis Tools

Static analysis tools are software development tools that analyze source code without running it.
They examine the code for errors, security vulnerabilities, and coding standards breaches. Static
analysis contributes to better software quality and security by discovering these issues early in the
development cycle. These technologies are critical for maintaining high software development
standards and can assist in avoiding costly mistakes and vulnerabilities from entering production.

e SonarQube, it is an open-source platform for continuous inspection of code quality and
security, including vulnerability detection (Marcilio et al., 2019).

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition

215 Analysis Tools in Context of Technical Debt Reduction

e Checkmary, it is a commercial static application security testing (SAST) tool for identifying
vulnerabilities in code (Singh, 2024).

e Fortify on Demand (Micro Focus), it is a commercial SAST tool for finding security
vulnerabilities, coding errors, and compliance issues (Hellstrom, 2009).

Dynamic Analysis Tools

Dynamic analysis tools analyze software's behaviour during runtime. They run the code in
controlled conditions and watch how it interacts with the environment. This enables them to detect
issues like memory leaks, performance, and security flaws that might not be seen during static
analysis. Dynamic analysis effectively evaluates real-world scenarios and ensures software works as
intended under varying settings.

e Burp Suite, it is a commercial web application security testing (WAST) platform for
intercepting, inspecting, and modifying web traffic (Kim, 2020).

e OWASP ZAP, it is an open-source WAST tool for finding vulnerabilities in web applications
(Jakobsson& Haggstrom, 2022).

e Nessus (Tenable), it is a commercial vulnerability scanner for identifying vulnerabilities in
systems and networks (Holcomb, 2009).

e OpenVAS, it is an open-source vulnerability scanner for detecting vulnerabilities in systems
and applications (Rahalkar, 2019).

e Qualys, it is a commercial vulnerability management and compliance solution (Sharma et al.,
2024).

Risk Assessment Tools

Risk assessment tools are software applications that assist organizations in identifying, analyzing,
and evaluating risks. These tools frequently use a variety of approaches, like threat modelling,
vulnerability scanning, and impact analysis, to determine the probability and impact of certain risks.
These tools assist organizations in making decisions regarding security measures and emergency
plans. Risk assessment techniques are essential for protecting valuable assets and managing potential
risks.

e RiskLens, it is a commercial platform for quantitative risk assessment and management
(Barlow et al., 2021).

e Security Scorecard, it is an open-source tool for assessing and improving security (Arntzen
Toftegaard, 2022).

e ThreatModeler (Microsoft), it is a commercial software that detects and mitigates security
vulnerabilities (Pai & Kunte, 2022).

Security Debt Management Platforms

Security debt management systems are software tools that assist organizations in tracking security
vulnerabilities. These platforms frequently interface with various security tools, including
vulnerability scanners and static analysis tools, to offer a complete picture of an organization's
security posture. By providing a disciplined approach to addressing security vulnerabilities, these
systems help organizations reduce risk exposure and improve overall security posture.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 216

e DefectDojo, it is an open-source vulnerability management application for tracking,
managing, and prioritizing vulnerabilities (Bernardo, 2022).

e Snyk, it is a security tool that finds and resolves vulnerabilities in code, containers, and open
source dependencies (D et al, 2023).

e GitLab, the GitLab DevOps platform has built-in security measures like vulnerability
detection and licensing compliance (Rahman,2024).

Specialized Tools

Specialized tools are created for specialized jobs or industries and have more advanced features
and capabilities than general-purpose tools. To utilize these technologies properly, you will likely
need specialized expertise or training. Examples of specialized tools are:

o Veracode Software Composition Analysis (SCA), it is a commercial tool that identifies
open-source vulnerabilities and license compliance concerns (Singh, 2024).

e Black Duck (Synopsys), it is a commercial SCA tool for managing open-source risk (Lallet
et al., 2008).

e OWASP Dependency-Check, it is an open-source tool for identifying and assessing
vulnerabilities in open-source components (Cadariu et al., 2015).

e FOSSA, it is a commercial open-source software management platform with vulnerability
scanning capabilities (Zhang, 2020)

e Aqua Security, it is a commercial platform for securing containerized applications, including
vulnerability scanning and compliance (Makani& Jangampeta, 2024).

e Trivy, it is an open-source vulnerability scanner for container images (Zarei, 2022).
e SQLError, it is an open-source tool for detecting SQL vulnerabilities in applications
(Cebollero et al., 2015).

This study will evaluate these tools to discover the best solutions for diverse project contexts and
organizational demands.

Selection Criteria: For Security debt management

This research focuses on reducing security debt. To achieve this goal, the selection of tools was
prioritized based on their relevance to effective security management, as outlined below:

e Security Debt Metrics Analysis, they are tools were evaluated based on their capability to
analyze critical security debt metrics. This contains functionality for evaluating vulnerability
fix time, cost, and risk reduction. These measurements are critical in determining the exact
impact of security debt and the impact of reduction. These metrics included:

» Vulnerability Fix Time, it is the average time required to repair a vulnerability, from
discovery to resolution.

» Cost is the financial resources needed to repair a vulnerability, including labour,
equipment, and potential business effects.

» Risk reduction, it is the decrease in the occurrence and impact of a security event
once a vulnerability has been fixed.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

217

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction

These criteria were chosen as they give a complete picture of the impact of security debt
and the effect of repairing activities. The vulnerability fix time aids in the identification
of slow-moving vulnerabilities, but the cost of repair influences resource allocation
decisions. Risk reduction assesses the total effectiveness of security debt mitigation.

Usability for Security Debt Management, while usability is essential, the selection process
takes into consideration the special requirements of security debt management. Priority is
given to tools that are easy to use and understand, especially for stakeholders with less
technical expertise. Throughout the study process, this ensures informed decision-making and
active participation.

By keeping these standards in mind, the tools chosen will be ideal for evaluating and contrasting
different security debt reduction approaches, eventually yielding insightful findings for this study.

Selected SCA Tools Based on Selection Criteria

After defining the selection criteria and objectives, the following potential tools were selected for
comparison, as they show their applicability in security reduction:

Black Duck (Synopsys), it automates open-source security and licensing compliance for
developers and security teams. While its primary job is to manage open-source components,
it indirectly tackles technological debt by identifying and addressing possible risks early in
the development process. Key metrics addressed are likely to include vulnerability numbers,
license compliance status, and maybe code coverage for security checks (Lallet et al.,2008).

Sonatype Nexus, Nexus is primarily a software component repository manager that includes
security tools for identifying component vulnerabilities. It helps to reduce technological debt
by organizing component management and implementing security checks. Metrics might
include vulnerability numbers, dependency management efficiency, and even licensing
compliance (Vojnovi¢, 2023).

Veracode SCA, it is specifically developed to examine code for licensing conflicts and open-
source vulnerabilities, addressing technological debt by identifying possible security issues
early in the development process. Typical metrics include vulnerability numbers, license
compliance status, and possibly code coverage connected to vulnerability scans (Singh, 2024).

Snyk is a cloud-native open-source security platform That provides vulnerability scanning
and code repair. It contributes to reducing technical debt by giving rapid feedback on
vulnerabilities and remedy choices. Metrics would most likely include vulnerability counts,
repair rates, and maybe code quality metrics linked to security (D et al., 2023).

OWASP Dependency-Check, this open-source program detects open-source components
and scans for known vulnerabilities. While primarily concerned with vulnerability detection,
it helps to reduce technological debt by flagging potential security issues. Vulnerability
numbers and dependency management efficiency are two potential metrics (Cadariu et al.,
2015).

FOSSA, it is a cloud-based platform for managing open-source dependencies and detecting
security issues. It contributes to the reduction of technological debt by making open-source
components and their associated risks visible. Metrics might include vulnerability numbers,
license compliance status, and a review of open-source component use (Zhang, 2020).

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 218

Aqua Security, which specializes in containerized application security, indirectly reduces
technological debt by securing essential elements. Metrics would most likely include
vulnerability numbers in container images, compliance status, and maybe deployment speed
(Makani& Jangampeta, 2024).

SQLETrror, it is specifically developed to detect SQL injection vulnerabilities, addressing
technological debt by flagging a common security issue. Metrics would primarily focus on
SQL injection vulnerability numbers and, maybe, code coverage for SQL injection checks
(Cebollero et al.,2015).

Fortify on Demand (Micro Focus), it is a cloud-based tool for application security testing
that includes SCA. It helps decrease technical debt by discovering and fixing vulnerabilities.
Metrics will likely include a wide range of security vulnerabilities, code quality metrics, and
maybe compliance status (Hellstrom, 2009).

Trivy, it is vulnerable package scanner for container images. It solves technological debt by
detecting possible security concerns in containerized systems. Metrics would primarily focus
on vulnerability numbers in container images and maybe image creation efficiency (Zarei,
2022).

Software Composition Analysis Tool Comparison

Software Composition Analysis (SCA) tools are crucial for identifying and managing software
vulnerabilities. To assist organizations in choosing the best option, this research assesses several
popular SCA tools, outlining their strengths and weaknesses and recommended usage.

Key Features and Capabilities of SCA Tools

SCA tools include several features to help you find and fix software vulnerabilities. Here is an
overview of some important tools:

Black Duck, Black Duck's SCA and SBOM (Software Bill of Materials) development
capabilities assist organizations in efficiently managing open-source components. This lowers
security debt by detecting vulnerabilities early in the development process and helps with
licensing compliance by monitoring utilized components and licenses (Lallet et al., 2008).

Sonatype Nexus, while Nexus is essentially repository management, its integrated SCA
features assist in identifying vulnerabilities in components stored within the repository. This
helps to reduce security debt by identifying risks before deployment. However, handling
external dependencies might require extra tools (Vojnovi¢, 2023).

Veracode, it offers complete SCA in addition to other security testing technologies, providing
a complete solution to application security. This helps reduce security debt by detecting
various vulnerabilities and verifying compliance through licence checks (Singh, 2024).

Snyk, snyk's extensive SCA capability and smooth integration with CI/CD pipelines enable
early vulnerability identification. This considerably reduces security debt by moving it to the
left. Automated vulnerability identification and fix ideas assist in more efficient debt reduction
(D etal., 2023).

OWASP Dependency-Check, a lightweight open-source tool, is successful in identifying
vulnerabilities in open-source components. While its major aim is vulnerability identification,
it also helps to reduce security debt by noticing possible threats (Cadariu et al.,2015).

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
219 Analysis Tools in Context of Technical Debt Reduction

e FOSSA, it focuses on open-source SCA and licensing compliance and assists organizations
in managing open-source components in a secure ethical manner. By discovering
vulnerabilities and licence breaches, FOSSA helps to reduce security debt and ensure
compliance (Zhang, 2020).

e Aqua Security, Aqua Security's container security platform now includes SCA, providing
full protection for cloud-native settings. This helps reduce security debt by addressing
vulnerabilities in container images, a significant component in modern systems (Makani&
Jangampeta, 2024).

o SQLError, it is specifically built to address SQL injection vulnerabilities, a common security
problem. By detecting these vulnerabilities, we may reduce security debt and increase
application security (Cebollero et al., 2015).

o Fortify on Demand, with its strong SCA capabilities and integration with development
lifecycles, allows for early vulnerability identification and mitigation. This reduces security

debt by detecting and resolving vulnerabilities throughout the development phase (Hellstrom,
2009).

e Trivy: a lightweight, open-source vulnerability scanner for container images, is successful at
identifying possible vulnerabilities. This helps reduce security debt by assuring the security
of containerized applications (Zarei, 2022).

Understanding the major characteristics and capabilities of different SCA tools allows organizations
to pick the best solutions for their unique security and compliance requirements, eventually reducing
security debt and enhancing overall application security.

Strengths and Weaknesses of SCA Tools

It's important to know the SCA tool's strengths and weaknesses with respect to the project's needs
before selecting it.

Snyk, Veracode, and Fortify on Demand

e Snyk, it provides wide vulnerability detection, easy interaction with CI/CD pipelines, and
prioritization features. While these advantages contribute to quick security debt reduction,
complex systems may necessitate additional configuration work (D et al., 2023).

e Veracode, it offers complete SCA and security testing tools. This comprehensive strategy can
effectively reduce security debt. However, the price approach may be too expensive for large-
scale implementations (Singh, 2024).

e Fortify on Demand, it provides comprehensive code analysis and integration into
development workflows. This can result in earlier vulnerability detection and reduced security
debt. However, the subscription approach may not be appropriate for smaller companies with
low funding (Hellstrom, 2009).

FOSSA and OWASP Dependency Check
e FOSSA, it helps managing open-source licenses, therefore reducing legal concerns and
associated security consequences. However, vulnerability detection skills may be more
limited than commercial options, thereby affecting security debt reduction (Zhang, 2020).
e OWASP Dependency-Check, it is a free and open-source solution for identifying
fundamental vulnerabilities. While it can be a useful starting point for reducing security debt
(Cadariu et al., 2015).

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition

Analysis Tools in Context of Technical Debt Reduction

Black Duck and Sonatype Nexus
e Black Duck, it offers robust SBOM development and integration capabilities, which help in
supply chain security and compliance. However, managing complicated projects can be

difficult, affecting efficiency and security debt reduction (Lallet et al., 2008).
e Sonatype Nexus, it provides powerful repository and product management capabilities.

While useful for component management, it may need the use of extra tools for external

dependency management, affecting the overall security posture (Vojnovi¢, 2023).

Aqua Security and Trivy

e Aqua Security, it offers full container security, such as vulnerability screening, compliance
checks, and runtime protection. This can greatly reduce security debt in cloud-native
situations. However, it may be overkill for standard applications (Makani& Jangampeta,

2024)

e Trivy, it provides lightweight container image scanning, making it ideal for fast vulnerability
evaluation. While it is useful for basic assessments, it may fall short when compared to

commercial products in terms of vulnerability complexity (Zarei ,2022).

SQLError

It is designed specifically for SQL injection vulnerabilities, and SQLError successfully fights this
threat. However, its reach is restricted, and it may not be enough to meet larger SCA standards

(Cebollero et al., 2015).

The following table presents a comparative analysis of various software composition analysis
(SCA) tools. It highlights the key features and capabilities of each tool, enabling readers to select the
most suitable SCA solution for their needs.

Table 2

Comparison Between SCA Tools
Vulnerability = License

Tool

Black Duck
(Synopsys)
Sonatype
Nexus
Veracode
SCA
Snyk

OWASP
Dependency
-Check
FOSSA

Aqua
Security
SQLError

Fortify on
Demand
(Micro
Focus)
Trivy

Scanning

Yes
Yes
Yes

Yes

Yes

Yes
(Limited)
Yes

No

Yes

Yes

Management

Yes
Limited
Yes

Basic

No

Advanced

No

Source: Prepared by the authors.

CI/CD
Integratio
n

Yes
Yes
Yes

No

Yes

Yes

Yes

Yes

Yes

SBOM
Generation

Yes

Open-
source

Yes

Yes

Yes

Yes

Yes

Container
Scanning

Yes

Yes

Yes

Yes

SAST Cloud-
Capabilities = based
No Yes
No Yes
Yes Yes
No Yes
No Yes
No Yes
No Yes
No No
No No
Yes Yes

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction

221

As shown in Table 2, a wide range of SCA tools are available to meet the requirements of various
organizations. While Snyk, Veracode, and Fortify on Demand provide extensive functionality, their
cost and complexity may make them unsuitable for smaller applications. FOSSA and OWASP
Dependency- Check shine in open-source management, while commercial solutions frequently
provide more complete vulnerability detection. Black Duck and Sonatype Nexus go beyond basic
SCA; however, they may require more tools or incur greater expenses. Aqua Security and Trivy
dominate container security, but SQLError addresses a specific database problem.

Finally, the best SCA tool depends on an organization's requirements, budget, and development
environment.

Selection for the Most Appropriate SCA Tools

This section explores how different types of companies may use Software Composition Analysis
(SCA) tools to meet their security requirements.

Applications of SCA Tools

This section explains how organizations in the real world employ software composition analysis
(SCA) techniques to handle security concerns. As illustrated in Table 3, the application of SCA
approaches can reduce security debt. The specific use cases listed in Table 3 illustrate how these
technologies can be used to solve various security problems. Table 3 suggests software composition
analysis (SCA) solutions for various domains depending on industry, project size, and security needs.

It advises on picking the best SCA tool to meet certain security concerns.

Table 3

Choosing the Right SCA Tool: A Practical Guide

Tool Suitable Fields
Black Duck General SCA across
(now part of industries (e.g.,

Synopsys) = telecommunications,
manufacturing,
healthcare)

Sonatype = Software development,

Nexus DevOps (e.g.,
technology, finance,
retail)

Veracode Software development,

SCA application security
(e.g., technology,
education,
government)

Snyk Software development,

DevOps, cloud
security (e.g.,

Justification
Black Duck's extensive feature set, which
includes vulnerability detection, licensing
compliance, and software composition
analysis, makes it an adaptable alternative
for a variety of organizations. The ability
to manage large-scale projects and
interact with numerous development tools
is very useful in complicated contexts.
Sonatype Nexus excels in software
component management and effectively
adds security measures into the
development cycle. Its focus on product
dependency management makes it ideal
for DevOps organizations and teams that
value speed and efficiency.
Veracode SCA provides a powerful
platform for static and dynamic
application security testing, making it
appropriate for organizations that value
thorough vulnerability assessment. The
focus on application security is consistent
with businesses subject to tight, satisfying
regulatory requirements.
Snyk's cloud-native platform and focus on
developer-first security make it ideal for
current development patterns. Its strengths

Reference
(Lallet et al.,2008)

(Vojnovi¢, 2023)

(Singh, 2024)

(D etal., 2023)

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024)

Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction

telecommunications,
media &
entertainment,
automotive)
OWASP Open-source projects,
Dependency security researchers
-Check (all industries)
FOSSA Open-source projects,
license compliance (all
industries)
Aqua Containerized
Security applications, cloud
security (e.g., cloud
providers,
telecommunications,
financial services)
SQLError Static application
security testing
(SAST) (all industries)
Fortify on = Broad SCA use cases
Demand (e.g., technology,
(Micro healthcare,
Focus) government)
Trivy Container security,

vulnerability scanning
(e.g., cloud providers,
DevOps, containerized
applications)

Source: prepared by the authors

in container and cloud security are in line
with the requirements of organizations
using cloud-based architectures.

Dependency-Check is an open-source tool
that is free to use for projects of any size.
Its major focus on discovering
vulnerabilities in open-source components
makes it useful for organizations
concerned with supply chain security.
FOSSA excels at managing open-source
licenses and ensuring compliance, making
it important for organizations with
complicated software supply chains. The
ability to detect possible legal concerns
linked with open-source usage is critical
for risk management.

Aqua Security offers complete security
for containerized settings, including
vulnerability screening, runtime
protection, and compliance. Its emphasis
on cloud-native apps makes it ideal for
organizations implementing
containerization plans.

SQLETrror specializes in identifying SQL
injection flaws, which are a serious
security issue. Its emphasis on a single
danger area makes it an invaluable tool
for organizations that prioritize database
security.

Fortify provides a complete platform for
application security testing, which
includes SCA, SAST, and DAST. Its
extensive feature set and scalability make
it ideal for organizations with complex
security needs.

Trivy is a lightweight and efficient
vulnerability scanner for container
images. Its emphasis on container security
is consistent with the demands of
organizations using containerization.

Result Analysis of Different SCA Tool Deployment

(Cadariu et
al.,2015).

(Zhang, H., 2020)

(Makani&
Jangampeta, 2024)

(Cebollero et al.,

2015)

(Hellstrom, 2009)

(Zarei, 2022)

Deploying SCA technologies offers several advantages to organizations trying to improve their
security posture. Here's a closer look at some key results:

e Improved Vulnerability Detection, SCA tools do more than identifying vulnerabilities.
They may review the codebase to determine the specific location of the vulnerability, evaluate
its impact and the potential to determine how serious it is, and even make recommendations
for possible fixes. Developers can effectively identify vulnerabilities and prioritize fixes with
the help of this complete information.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
223 Analysis Tools in Context of Technical Debt Reduction

e Reduced Security Debt, by proactively resolving vulnerabilities identified by SCA tools,
organizations may decrease their security debt and the attack surface for potential attackers.

e Streamlined Patch Management, SCA tools can automate vulnerability identification and
prioritization, allowing development and security teams to focus on patching the most critical
vulnerabilities first.

e Increased Developer Productivity, SCA tools may be integrated into development
workflows to provide developers with real-time alerts about vulnerabilities in their code. This
enables them to patch vulnerabilities earlier in the development cycle, eliminating rework and
saving time and effort.

o False Positives and Ongoing Challenges, it is critical to recognize that SCA tools can
occasionally provide false positives, requiring manual verification by security professionals.
Additionally, updating SCA tools with the most recent vulnerability databases is critical to
their usefulness.

Conclusion and Future Directions

An organization's security posture is seriously threatened by security debt, which is the
accumulation of unresolved security vulnerabilities. The negative consequences of security debt were
discovered by this study, which include a higher chance of breaches, data loss, and reputational
damage. Tools with features associated with security debt measures, data exchange, usability, and
availability were given a lot of weight throughout the selection process. Following these criteria, a
several practical choices were discovered, including commercial services like Snyk, Veracode, and
Black Duck and open-source alternatives like OWASP Dependency-Check and Trivy. The ultimate
decision will be based on how well these tools correspond with the specific study objectives and
available resources. The study tries to give useful insights into the capabilities of various security
debt reduction solutions. The findings will help organizations gain a better knowledge of how to pick
and use these tools effectively to manage and reduce security debt.

Figure 6 shows the essential stages involved in effectively managing technical debt, including
reviewing existing code, identifying problems, recommendations, detailed action plans and
implementation of the solution. By following these steps, organizations can proactively address
technical debt and improve the overall health and sustainability of their software systems. Addressing
security debt may greatly enhance an organization's overall security posture. This results in better
data protection, a lower chance of cyberattacks, and more compliance with security regulations.

Figure 6
Managing Technical Debt

Review Existing Code

Implementation Work Flow
To Address
TD

Identify Problem

Detailed Action Plans LEEE LA Recommendations

Source: (10Pearls, n.d.).

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction

224

Several aspects require more investigation to strengthen security debt management practices, such as:

Improved Measurement Techniques, it is critical to develop more precise and consistent
ways of measuring security debt. This would allow organizations to properly measure their
security debt load and track how it is reduced over time.

Prioritization Frameworks, which assist organizations in determining which security
vulnerabilities to address first, would be extremely beneficial. These frameworks might take
into consideration risk, possible damage, and simplicity of clean-up.

The Impact of New Technologies, emerging technologies like automation and machine
learning have the potential to revolutionize security debt management. More study is needed
to determine how these tools may be used to automate vulnerability detection, patching
methods, and security debt tracking (Dissanayake et al., 2022).

The Role of Security Culture, creating a strong security culture inside organizations is
critical for avoiding the build-up of security debt in the first place. Further study might look
into ways to foster a culture of security knowledge, ownership, and continual improvement.

Recognizing the Consequences of Security, organizations may enhance their overall
security posture and minimize the risk of cyberattacks by recognizing the consequences of
security debt and taking proactive actions to control it through improved assessment,
prioritization, and the use of new technologies. Furthermore, cultivating a strong security
culture may assist in avoiding the building of security debt in the first place, resulting in a
more secure digital ecosystem.

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
225 Analysis Tools in Context of Technical Debt Reduction

References

10Pearls. (n.d.). Technical debt management https://10pearls.com/technical-debt-management/ Accessed
15/9/2024

Arntzen Toftegaard, @. A. (2022). An effect analysis of ISO/IEC 27001 certification on technical security of
Norwegian grid operators. In 2022 IEEE International Conference on Big Data (Big Data), 2620-2629.
IEEE. https://doi.org/10.1109/BigData55660.2022.10020529

Barlow, C., Walklate, S., & Johnson, K. (2021). Risk refraction: Thoughts on the victim-survivor’s risk journey
through the criminal justice process. International Journal for Crime, Justice and Social Democracy, 10(3),
177-190. https://search.informit.org/doi/10.3316/informit.026564949450511

Bernardo, G. (2022). DevSecOps pipelines improvement.: new tools, false positive management, quality gates
and rollback (Master’s Thesis, Politecnico di Torino). Politecnico di Torino.

Cadariu, M., Bouwers, E., Visser, J., & Van Deursen, A. (2015). Tracking known security vulnerabilities in
proprietary software systems. In 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 516-519. IEEE.

Cebollero, M., Natarajan, J., Coles, M. (2015). Error handling and dynamic SQL. In: Pro T-SQL Programmer's
Guide. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-0145-9 18

Cifuentes, C., Gauthier, F., Hassanshahi, B., Krishnan, P., & McCall, D. (2023). The role of program analysis
in security vulnerability detection: Then and now. Computers & Security, 135, 103463.
https://doi.org/10.1016/j.cose.2023.103463.

Coetzer, C., and Leenen, L. (2024). Managing cyber security debt: strategies for identification, prioritization,
and mitigation. In Proceedings of 19th International Conference Cyber Warfare and Security (ICCWS),
19(1), 439-446. doi: 10.34190/iccws.19.1.2178.

D, S., M K, N., Ashok Kumar, R., & Nidugala, M. (2023). To detect and mitigate the risk in continuous
integration and continues deployments (CI/CD) pipelines in supply chain using Snyk tool. In 2023 7th
International Conference on Computation System and Information Technology for Sustainable Solutions
(CSITSS), 1-10. DOIL:10.1109/CSITSS60515.2023.10334136

Debricked. (2021, October 11). SCA Tools Overview. https://debricked.com/blog/sca-tools-overview/

Dissanayake, N., Jayatilaka, A., Zahedi, M. & Babar, M. 4. (2022). An empirical study of automation in
software security patch management. /n Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 1-1.

Dudee, Y. (2021). Exploration of technical debt in plan-based vs. agile processes: A standard literature
review. FinalPaper TechnicalDebt-converted2 (1).pdf

Hellstrom, P. (2009). Tools for static code analysis: A survey [PhD Thesis, Linkdping University-
Department of Computer and Information Science]. Linkoping University.
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16658

Holcomb, J. (2009, May 11-12). Auditing cyber security configuration for control system applications. In
2009 IEEE Conference on Technologies for Homeland Security, 7-13. IEEE.
https://doi.org/10.1109/THS.2009.5168008

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
Analysis Tools in Context of Technical Debt Reduction 226

Imtiaz, N., Thorn, S., & Williams, L. (2021). A comparative study of vulnerability reporting by software
composition analysis tools. In Proceedings of the 15th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 1-11. IEEE. https://doi.org/10.1145/3475716.3475769

Itech India. (2021, June 29). Is technical debt the monster it is made out to be?
https://itechindia.co/us/blog/is-technical-debt-the-monster-it-is-made-out-to-be/

Izurieta, C., Rice, D., Kimball, K., & Valentien, T. (2018). A position study to investigate technical debt
associated with security weaknesses. In Proceedings of the 2018 International Conference on Technical
Debt, 138-142. https://doi.org/10.1145/3194164.3194167

Jakobsson, A., & Héggstrom, 1. (2022). Study of the techniques used by OWASP ZAP for analysis of
vulnerabilities in web applications (Master’s Thesis, Linkoping University - Department of Computer
and Information Science). Linkoping University. https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-
186346

Kim, J. (2020). Burp suite: Automating web vulnerability scanning [Master’s Thesis, Utica College]. Utica
College. Burp Suite: Automating Web Vulnerability Scanning - ProQuest

Kruke, M. M. (2022). Security debt in practice: 4 qualitative case study (Master’s thesis, University of Oslo).
University of Oslo. masterthesis-maren-maritsdatter-kruke.pdf (uio.no)

Lallet, J., Pillement, S., & Sentieys, O. (2008). Efficient dynamic reconfiguration for multi-context embedded
fpga. Proceedings of the 21st annual symposium on Integrated circuits and system design, 210-215.
DOI:10.1145/1404371.1404428

Li, Y., Soliman, M. and Avgeriou, P. (2023). Automatic identification of Self-admitted technical debt from
four different sources. Empirical Sofiware Engineering, 28(3), 65. https://doi.org/10.1007/s10664-023-
10297-9

Makani, S. T., & Jangampeta, S. (2024). Devops security tools evaluating effectiveness in detecting and fixing
security holes. International Journal of DevOps (IJDO), 1(2), 1-12.

Marcilio, D., Bonifacio, R., Monteiro, E., Canedo, E., Luz, W., & Pinto, G. (2019). Are static analysis
violations really fixed? A closer look at realistic usage of SonarQube. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), 209-219. IEEE.
https://doi.org/10.1109/ICPC.2019.00040

Martinez, J., Quintano, N., Ruiz, A, Santamaria, 1., De Soria, 1., & Arias, J. (2021). Security debt:
Characteristics, product life-cycle integration and items. In Proc. 2021 IEEE/ACM International
Conference Technical Debt (TechDebt), 9-18. IEEE. doi: 10.1109/TechDebt52882.2021.00009.

McClintock, M. (202). 8 common sources of security debt (& tips to address each). Better AppSec.
https://betterappsec.com/8-common-sources-of-security-debt-tips-to-address-each-f42de8e45bb7

Melo, A., Fagundes, R., Lenarduzzi, V., & Santos, W.B. (2022). Identification and measurement of
requirements technical debt in software development: A systematic literature review. Journal of Systems
and Software, 194(c), 111483. https://doi.org/10.1016/1.jss.2022.111483

Olsson, J., Risfelt, E., Besker, T., & Martini, A., Torkar, R. (2021). Measuring affective states from technical
debt: A psychoempirical software engineering experiment. Empirical Sofiware Engineering. 26. 105.
https://doi.org/10.1007/s10664-021-09998-w

Ombredanne, P. (2020). Free and open source software license compliance: Tools for software composition
analysis. Computer, 53(10), 105-109. https://doi.org/10.1109/MC.2020.3011082

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

Comparative Evaluation of Software Composition
27 Analysis Tools in Context of Technical Debt Reduction

Pai, S & Kunte, S. (2022). A Comprehensive analysis of automated threat modelling solution company: Threat
modeler software, Inc. In International Journal of Case Studies in Business, IT and Education (IJCSBE),
6(2), 99-107. DOI:10.47992/1ICSBE.2581.6942.0186

Rahalkar, S. (2019). OpenVAS. In: Quick start guide to penetration testing. Apress, Berkeley, CA.
https://doi.org/10.1007/978-1-4842-4270-4 2

Rahman, M. M., Barek, M. A., Akter, M. S., Riad, A. K. 1., Rahman, M. A., Shahriar, H., Rahman, A., & Wu,
F. (2024). Authentic learning on DevOps security with labware: Git hooks to facilitate automated security
static analysis. In Proc. of 2024 IEEE 48th Annual Computers, Software, and Applications Conference
(COMPSAC), 2418-2423. TEEE.

Rindell, K., Bernsmed, K., & Jaatun, M.G. (2019). Managing security in software: Or: How I learned to stop
worrying and manage the security technical debt. In Proceedings of the 14th International Conference on
Availability, Reliability and Security, 1-8. DOI:10.1145/3339252.3340338

Rios, N., Neto, M.G. and Spinola, R.O. (2018). A tertiary study on technical debt: Types, management
strategies, research trends, and base information for practitioners. Information and Sofiware Technology,
102, 117-145.

Sharma, M., Desai, D., Arun, A. R., L. P., & Rajagopalan, N. (2024). OpenVAS vs the rest: Unveiling the
competitive edge in vulnerability scanners. In 2024 3rd International Conference for Innovation in
Technology (INOCON), 1-6. IEEE. https://doi.org/10.1109/INOCON60754.2024.10511864

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., Chatzigeorgiou, A., Tzovaras, D., Anicic, N., Gelenbe,
E. (2019). An empirical evaluation of the relationship between technical debt and software security.
10.13140/RG.2.2.15488.79365

Singh, A. (2024). Microservices security vulnerability remediation approach using Veracode and
Checkmarx. Journal of Artificial Intelligence General Science (JAIGS), 4(1), 145-151.
https://doi.org/10.60087/jaigs.v4il.128

Stepsize. (2021). The state of technical debt 2021: What engineers think about technical debt and its impact

on team morale, velocity, and customer experience (Survey). https://assets.website-
files.com/5f92281¢cc30586744dc7122/60e306c6db6224328eaf47a3 Tech%20debt%20report.pdf

TatvaSoft Blog. (2023, December 12). Guide to software composition analysis.
https://www.tatvasoft.com/outsourcing/2023/12/software-composition-analysis.html

Vojnovi¢, J. (2023). Mitigating supply chain attacks through detection of high-risk software dependencies.
J_Vojnovic __ Mitigating_supply_chain_attacks through detection_of high-
risk software dependencies.pdf (ru.nl)

Zaimi, A., Ampatzoglou, A., Triantafyllidou, N., Chatzigeorgiou, A., Mavridis, A., Chaikalis, T.,
Deligiannis, 1., Sfetsos, P., Stamelos, 1. (2015). An empirical study on reusing third-party libraries in
open-source software development. In Proceedings of the 7th Balkan Conference on Informatics
Conference (BCI '15). Association for Computing Machinery, 1-8.
https://doi.org/10.1145/2801081.2801087

Zarei, M. (2022). Investigating the inner workings of container image vulnerability scanners (Master's thesis,
Oslo Metropolitan University). https://oda.oslomet.no/oda-xmlui/bitstream/handle/11250/3017416/zarei-
acit2022.pdf?sequence=1&isAllowed=y

Zhang, H. (2020). Comparison of open source license scanning tools. Bachelor Degree Project.
FULLTEXTO1.pdf (diva-portal.org)

The International Journal of Public Policies In Egypt, Volume 3, Issue 4 (October 2024) Published by IDSC

2024 551 - (4) 23ad) - 3 alaa - e 8 daladl Clulpd] 43 gall Al ole pabiae 145 228
ISSN: Print: 2812 - 4758 , Online: 2812 - 4766 ez W e

Al Ogatl) Ganddl (law B Claapl) (eSS Jalat Glgl O lal) anil

saliiaal)

Gl e dlee (68 8) Bl Jolall Caagd bl duvia ")l mlhas aadieg
oyl 35S Jalas clgdl auin oAbl S5 daghll ol e gl cilse Ll Sl uail
Gsll (LY s duali cduidll (gl Qi 3l & Software Composition Analysis (SCA)
A balass il 3 oLy dluall 8 JSLia) 25 A daped) Sl Cllse o ddl
b cinall Bl aaat DA e Bl Glaesll ol Clajlas 8 SCA Clsdl duaal o spual
iy S S5 Al Ol i lgal) o3gd (Sarg cJlad U Lgiallaag siuaall dagibe clipSal
Uggus Lihad o 2l dahiaall SCA clsal o dudyall cijliy Aoyl Cliadaill dalall 535ally (LY)
Al (gl Qs 8 Aled SCA @lsl (o) Ayl cilagig AiaY) (el Qs 3 Lgallad g Lgaladinnd
Cigally ¢ yolail) (3ykag ¢ 3kl g slelpe SCA 1 Hladl die Cluagall e ang () g duals

Aabiall)

